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TYPE ERRORS



Type Checking Rules
Type errors for if statements can be confusing sometimes. Recall:

let rec concatn s n =
if n <= 0 then
...

else
s ^ (concatn s (n-1))
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Type Checking Rules
Type errors for if statements can be confusing sometimes. Recall:

let rec concatn s n =
if n <= 0 then
...

else
s ^ (concatn s (n-1))

Error: This expression has type int but an 
expression was expected of type string

ocamlbuild says:
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Type errors for if statements can be confusing sometimes. Recall:

Type Checking Rules

Error: This expression has type int but an 
expression was expected of type string

let rec concatn s n =
if n <= 0 then
...

else
s ^ (concatn s (n-1))

Error: This expression has type string but an 
expression was expected of type int

ocamlbuild says:

merlin inside emacs points to the error above and gives a second error:
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Type errors for if statements can be confusing sometimes.  
Example.  We create a string from s, concatenating it n times:

Type Checking Rules

Error: This expression has type int but an 
expression was expected of type string

let rec concatn s n =
if n <= 0 then
...

else
s ^ (concatn s (n-1))

Error: This expression has type string but an 
expression was expected of type int

ocamlbuild says:

merlin inside emacs points to the error above and gives a second error:
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Type errors for if statements can be confusing sometimes.  
Example.  We create a string from s, concatenating it n times:

Type Checking Rules

Error: This expression has type int but an 
expression was expected of type string

let rec concatn s n =
if n <= 0 then
0

else
s ^ (concatn s (n-1))

Error: This expression has type string but an 
expression was expected of type int

ocamlbuild says:

merlin inside emacs points to the error above and gives a second error:

they don't
agree!
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Type errors for if statements can be confusing sometimes.  
Example.  We create a string from s, concatenating it n times:

Type Checking Rules

let rec concatn s n =
if n <= 0 then
0

else
s ^ (concatn s (n-1))

The type checker points to some place where there is disagreement.

Moral:  Sometimes you need to look in an earlier branch for the error
even though the type checker points to a later branch.
The type checker doesn't know what the user wants.

they don't
agree!
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A Tactic:  Add Typing Annotations
9

let rec concatn (s:string) (n:int) : string =
if n <= 0 then
0

else
s ^ (concatn s (n-1))

Error: This expression has type int but an 
expression was expected of type string



ONWARD
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What is the single most important mathematical 
concept ever developed in human history? 
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What is the single most important mathematical 
concept ever developed in human history? 

An answer:  The mathematical variable
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What is the single most important mathematical 
concept ever developed in human history? 

An answer:  The mathematical variable
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(runner up: natural numbers/induction)



Why is the mathematical variable so important?
The mathematician says:

“Let x be some integer, we define a polynomial over x ...”
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Why is the mathematical variable so important?
The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

What is going on here?  The mathematician has separated a 
definition (of x) from its use (in the polynomial).  

This is the most primitive kind of abstraction (x is some integer)

Abstraction is the key to controlling complexity and without it, 
modern mathematics, science, and computation would not exist.

It allows reuse of ideas, theorems ... functions and programs!
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OCAML BASICS:
LET DECLARATIONS
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Abstraction
• Good programmers identify repeated patterns in their code 

and factor out the repetition into meaningful components
• In O’Caml, the most basic technique for factoring your code is 

to use let expressions 
• Instead of writing this expression:

(2 + 3) * (2 + 3)
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Abstraction & Abbreviation
• Good programmers identify repeated patterns in their code 

and factor out the repetition into meaning components
• In O’Caml, the most basic technique for factoring your code is 

to use let expressions 
• Instead of writing this expression:

• We write this one:

(2 + 3) * (2 + 3)

let x = 2 + 3 in
x * x
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A Few More Let Expressions

let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed
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A Few More Let Expressions

let a = "a" in 
let b = "b" in
let as = a ^ a ^ a in
let bs = b ^ b ^ b in
as ^ bs

let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed
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Abstraction & Abbreviation
Two “kinds” of let:

let … in … is an expression that 
can appear inside any other expression

The scope of x (ie: the places x may
be used) does not extend outside
the enclosing “in”

let x = 2 + 3 

let y = x + 17 / x 

let …  without “in” is a top-level 
declaration

Variables x and y may be exported; 
used by other modules

You can only omit the “in” in a top-
level declaration

if tuesday() then
let x = 2 + 3 in
x + x

else
0
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Binding Variables to Values
During execution, we say an OCaml variable is bound to a value.
The value to which a variable is bound to never changes!

let x = 3 

let add_three (y:int) : int = y + x 
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Binding Variables to Values
During execution, we say an OCaml variable is bound to a value.
The value to which a variable is bound to never changes!

let x = 3 

let add_three (y:int) : int = y + x 

It does not
matter what
I write next.
add_three
will always
add 3!
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Binding Variables to Values
During execution, we say an OCaml variable is bound to a value.
The value to which a variable is bound to never changes!

let x = 3 

let add_three (y:int) : int = y + x 

let x = 4 

let add_four (y:int) : int = y + x 

a distinct
variable that
"happens to
be spelled the
same"
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Binding Variables to Values
Since the 2 variables (both happened to be named x) are actually 
different, unconnected things, we can rename them

let x = 3 

let add_three (y:int) : int = y + x 

let zzz = 4 

let add_four (y:int) : int = y + zzz

let add_seven (y:int) : int =
add_three (add_four y)

rename x
to zzz
if you want
to, replacing
its uses
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Binding Variables to Values
A use of a variable always refers to it’s closest (in terms of 
syntactic distance) enclosing declaration.  Hence, we say OCaml
is a statically scoped (or lexically scoped) language

let x = 3 

let add_three (y:int) : int = y + x 

let x = 4 

let add_four (y:int) : int = y + x 

let add_seven (y:int) : int =
add_three (add_four y)

we can use
add_three
without worrying
about the second
definition of x
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How does OCaml execute a let expression?

let x = 2 + 1 in x * x
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How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x
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How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

substitute
3 for x

29



How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

-->

9

substitute
3 for x
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How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

-->

9

substitute
3 for x

Note:  I write 
e1 --> e2
when e1 evaluates
to e2 in one step
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Meta-comment
32

let x = 2 in x + 3      -->       2 + 3

I defined the language in terms of itself:
By reduction of one OCaml expression to another

I’m trying to train you to think at a high level of 
abstraction.

I didn’t have to mention low-level abstractions like 
assembly code or registers or memory layout to tell you 

how OCaml works.

OCaml expression OCaml expression



Another Example

let x = 2 in 
let y = x + x in 
y * x
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Another Example

let x = 2 in 
let y = x + x in 
y * x

-->

substitute
2 for x

let y = 2 + 2 in 
y * 2
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Another Example

let x = 2 in 
let y = x + x in 
y * x

-->

-->

substitute
2 for x

let y = 2 + 2 in 
y * 2

let y = 4     in 
y * 2
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Another Example

let x = 2 in 
let y = x + x in 
y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in 
y * 2

let y = 4     in 
y * 2

4 * 2

substitute
4 for y
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Another Example

let x = 2 in 
let y = x + x in 
y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in 
y * 2

let y = 4     in 
y * 2

4 * 2
-->

8

substitute
4 for y

Moral: Let 
operates by 
substituting

computed values 
for variables
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OCAML BASICS:
TYPE CHECKING AGAIN
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Back to Let Expressions ... Typing

let x = e1 in

e2

overall expression 
takes on the type of e2

x granted type of e1 for use in e2
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Back to Let Expressions ... Typing

let x = e1 in

e2

x granted type of e1 for use in e2

let x = 3 + 4 in

string_of_int x

overall expression 
takes on the type of e2

x has type int
for use inside the
let body

overall expression
has type string
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OCAML BASICS:
FUNCTIONS
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let add_one (x:int) : int = 1 + x 

Defining functions
42



let add_one (x:int) : int = 1 + x 

Defining functions

function name

argument name

type of argument

type of result expression
that computes
value produced
by function

let keyword

Note:  recursive functions with begin with "let rec"
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Defining functions
Nonrecursive functions:

let add_one (x:int) : int = 1 + x 

let add_two (x:int) : int = add_one (add_one x) 

definition of add_one
must come before use
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Defining functions
Nonrecursive functions:

With a local definition:

let add_one (x:int) : int = 1 + x 

let add_two (x:int) : int = add_one (add_one x) 

local function definition
hidden from clients

I left off the types.  
O'Caml figures them out

Good style: types on
top-level definitions

let add_two' (x:int) : int = 
let add_one x = 1 + x in
add_one (add_one x) 
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Types for Functions
Some functions:

Types for functions:

let add_one (x:int) : int = 1 + x 

let add_two (x:int) : int = add_one (add_one x) 

let add (x:int) (y:int) : int = x + y 

add_one : int -> int

add_two : int -> int

add : int -> int -> int

function with two arguments
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Rule for type-checking functions

add_one : int -> int

3 + 4 : int

add_one (3 + 4) : int

If a function f : T1 -> T2
and an argument e : T1 
then f e : T2

General Rule:

Example:
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Rule for type-checking functions
Recall the type of add:

let add (x:int) (y:int) : int = 
x + y

Definition:

add : int -> int -> int

Type:
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Rule for type-checking functions
Recall the type of add:

let add (x:int) (y:int) : int = 
x + y

Definition:

add : int -> int -> int

Type:

add : int -> (int -> int)

Same as:
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Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : ???

General Rule:

Example:
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A -> B -> C

same as:

A -> (B -> C)

If a function f : T1 -> T2
and an argument e : T1 
then f e : T2



Rule for type-checking functions

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) : 

General Rule:

Example:
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A -> B -> C

same as:

A -> (B -> C)

If a function f : T1 -> T2
and an argument e : T1 
then f e : T2



Rule for type-checking functions

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) : int -> int

General Rule:

Example:
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If a function f : T1 -> T2
and an argument e : T1 
then f e : T2

A -> B -> C

same as:

A -> (B -> C)



Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

(add (3 + 4)) 7 : int

General Rule:

Example:
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If a function f : T1 -> T2
and an argument e : T1 
then f e : T2

A -> B -> C

same as:

A -> (B -> C)



Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

add (3 + 4) 7 : int

General Rule:

Example:

54

If a function f : T1 -> T2
and an argument e : T1 
then f e : T2

A -> B -> C

same as:

A -> (B -> C)

extra parens
not necessary



Rule for type-checking functions

let munge (b:bool) (x:int) : ?? =
if not b then
string_of_int x

else 
"hello"

let y = 17

Example:

munge (y > 17) : ??

munge true (f (munge false 3)) : ??   
f : ??

munge true (g munge) : ??     
g : ??
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Rule for type-checking functions

let munge (b:bool) (x:int) : ?? =
if not b then
string_of_int x

else 
"hello"

let y = 17

Example:

munge (y > 17) : ??

munge true (f (munge false 3)) : ??   
f : string -> int

munge true (g munge) : ??     
g : (bool -> int -> string) -> int
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One key thing to remember
• If you have a function f with a type like this:

• Then each time you add an argument, you can get the type of 
the result by knocking off the first type in the series

A -> B -> C -> D -> E -> F

f a1 : B -> C -> D -> E -> F (if a1 : A)

f a1 a2 : C -> D -> E -> F (if a2 : B)

f a1 a2 a3 : D -> E -> F (if a3 : C)

f a1 a2 a3 a4 a5 : F (if a4 : D and a5 : E)
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OUR FIRST* COMPLEX DATA STRUCTURE!
THE TUPLE

* it is really our second complex data structure since functions 
are data structures too!
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A tuple is a fixed, finite, ordered collection of values 
Some examples with their types:

Tuples

(1, 2) : int * int

("hello", 7 + 3, true) : string * int * bool

('a', ("hello", "goodbye")) : char * (string * string)
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To use a tuple, we extract its components
General case:

An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y
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To use a tuple, we extract its components
General case:

An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y  
-->  2 + 2 + 4 

substitute!
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To use a tuple, we extract its components
General case:

An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y
-->  2 + 2 + 4  
-->  8
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Rules for Typing Tuples
63

if e1 : t1 and e2 : t2 
then (e1, e2) : t1 * t2



Rules for Typing Tuples

let (x1,x2) = e1 in

e2

if e1 : t1 * t2 then
x1 : t1 and x2 : t2
inside the expression e2

overall expression 
takes on the type of e2

64

if e1 : t1 and e2 : t2 
then (e1, e2) : t1 * t2



Distance between two points

c2 = a2 + b2
(x1, y1)

(x2, y2)

a

b
c

Problem:  
• A point is represented as a pair of floating point values.
• Write a function that takes in two points as arguments and returns
the distance between them as a floating point number
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Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
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Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it 
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Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it 
6. Clean up by identifying repeated patterns

• define and reuse helper functions
• your code should be elegant and easy to read
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Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it 
6. Clean up by identifying repeated patterns

• define and reuse helper functions
• your code should be elegant and easy to read

Types help structure your thinking about how to write programs.
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Distance between two points

type point = float * float

a type abbreviation (x1, y1)

(x2, y2)

a

b
c
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Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

write down function name
argument names and types

(x1, y1)

(x2, y2)

a

b
c
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Distance between two points

type point = float * float

(* distance (0.0,0.0) (0.0,1.0) == 1.0
* distance (0.0,0.0) (1.0,1.0) == sqrt(1.0 + 1.0)
*
* from the picture:
* distance (x1,y1) (x2,y2) == sqrt(a^2 + b^2) 
*) 

let distance (p1:point) (p2:point) : float =

(x1, y1)

(x2, y2)

a

b
cexamples
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Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

let (x1,y1) = p1 in 
let (x2,y2) = p2 in
...

deconstruct
function inputs

(x1, y1)

(x2, y2)

a

b
c
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Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

let (x1,y1) = p1 in 
let (x2,y2) = p2 in
sqrt ((x2 -. x1) *. (x2 -. x1) +. 

(y2 -. y1) *. (y2 -. y1))

compute 
function
results

notice operators on
floats have a "." in them

(x1, y1)

(x2, y2)

a

b
c
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Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in 
let (x2,y2) = p2 in
sqrt (square (x2 -. x1)) +. 

square (y2 -. y1))

define helper functions to
avoid repeated code

(x1, y1)

(x2, y2)

a

b
c
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Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =
let square x = x *. x in
let (x1,y1) = p1 in 
let (x2,y2) = p2 in
sqrt (square (x2 -. x1) +. square (y2 -. y1))

let pt1 = (2.0,3.0)
let pt2 = (0.0,1.0)
let dist12 = distance pt1 pt2

testing

(x1, y1)

(x2, y2)

a

b
c
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MORE TUPLES
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Tuples
Here's a tuple with 2 fields:

(4.0, 5.0) : float * float
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Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string
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Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

Here's a tuple with 4 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int
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Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

Here's a tuple with 4 fields:

Here's a tuple with 0 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int

81

() : unit



SUMMARY:
BASIC FUNCTIONAL PROGRAMMING
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Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
5. Build new output values
6. Clean up by identifying repeated patterns

For tuple types:
– when the input has type t1 * t2

• use let (x,y) = … to deconstruct
– when the output has type t1 * t2

• use (e1, e2) to construct

We will see this paradigm repeat itself over and over
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WHERE DID TYPE SYSTEMS COME 
FROM?
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Origins of Type Theory
88

Georg Cantor

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html



Origins of Type Theory
89

Georg Cantor

Über eine Eigenshaft des Inbegriffes
aller reellen algebraischen Zahlen. 1874

(On a Property of the System of all the 
Real Algebraic Numbers)

“Considered the first purely theoretical
paper on set theory.” *

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html



Origins of Type Theory
90

Bertrand Russell



Origins of Type Theory
91

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

Bertrand Russell



Origins of Type Theory
92

Bertrand Russell

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

If we assume S is not in the set S, then 
by definition, it must belong to that set.

If we assume S is in the set S, then 
it contradicts the definition of S.

Russell’s paradox



Origins of Type Theory
93

Bertrand Russell

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

Russell’s solution:

Each set has a distinct type:
type 1, 2, 3, 4, 5, ...

A set of type i+1 can only have
elements of type i so it can’t
include itself.



Aside
94

Ernst Zermelo Abraham Fraenkel

Developers of Fraekel-Zermelo set theory.
An alternative solution to Russell’s paradox.



Fast Forward to the 70s

Robin Milner

95

In 1978, developed ML
and coined the phrase

“well-typed programs
don’t go wrong”

to describe a key property
of type-safe languages



Well-typed Programs Don’t Go Wrong
96

Some ML programs do not have a well-defined semantics:

Such programs do not type check.

“hello” + 3



Well-typed Programs Don’t Go Wrong
97

Some ML programs do not have a well-defined semantics:

Such programs do not type check.

Moreover, when we execute a well-typed program, we are guaranteed
to never, ever run into such a program during execution. 

let x = “hello” in
let y = 3 in
x + y

“hello” + 3



Well-typed Programs Don’t Go Wrong
98

Some ML programs do not have a well-defined semantics:

Such programs do not type check.

Moreover, when we execute a well-typed program, we are guaranteed
to never, ever run into such a program during execution.  

let x = “hello” in
let y = 3 in
x + y

“hello” + 3-- >*

“hello” + 3

well-typed programs don’t reduce to
programs like “hello” + 3, which go wrong



Well-type programs don’t go wrong
What about this expression:

3 / 0
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Well-type programs don’t go wrong
What about this expression:

It type checks.  When executed, ML will supply this message:

Did the expression “go wrong”?
Did it violate our credo “well-typed expressions don’t go wrong?”

3 / 0

100

Exception: Division_by_zero.



Well-type programs don’t go wrong
What about this expression:

It type checks.  When executed, ML will supply this message:

Did the expression “go wrong”?
Did it violate our credo “well-typed expressions don’t go wrong?”

No and No.  Exceptions are a well-defined result of a computation.
ie: you can look up what happens to 3 / 0 in the OCaml manual.

3 / 0

101

Exception: Division_by_zero.



Discussion Topics

What’s the difference between raising an exception and “going wrong”?

Why distinguish between these things?

Does one have to treat “hello” + 3 as “going wrong”?

Why does OCaml make such choices? 

Is it reasonable for other languages to choose differently?

102



Type Soundness
“Well typed programs do not go wrong”

Programming languages with this property have 
sound type systems.  They are called safe languages.

Safe languages are generally immune to buffer overrun 
vulnerabilities, uninitialized pointer vulnerabilities, etc., etc.
(but not immune to all bugs!)

Safe languages:  ML, Java, Python, …

Unsafe languages:  C, C++, Pascal
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Well typed programs do not go wrong
• Violating the rules:

• The type error message tells you the type that was expected 
and the type that it inferred for your subexpression

• By the way, this was one of the nonsensical expressions that 
did not evaluate to a value

• It is a good thing that this expression does not type check!
“Well typed programs do not go wrong”

Robin Milner, 1978

Robin Milner

Turing Award, 1991

“For three distinct and complete achievements: 

1. LCF, the mechanization of Scott's Logic of Computable Functions, probably 
the first theoretically based yet practical tool for machine assisted proof 
construction;

2. ML, the first language to include polymorphic type inference together with 
a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction, the study of 
the relationship between operational and denotational semantics.”
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