
COS 326 Functional Programming:
An elegant weapon for the modern age

David Walker
Princeton University

©
 2

00
7

xk
cd

slides copyright 2013-2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes

or mother's

In 1936, Alonzo Church invented
the lambda calculus. He called
it a logic, but it was a language
of pure functions -- the world's
first programming language.

He said:

"There may, indeed, be other
applications of the system than
its use as a logic."

Alonzo Church, 1903-1995
Princeton Professor, 1929-1967

2

In 1936, Alonzo Church invented
the lambda calculus. He called
it a logic, but it was a language
of pure functions -- the world's
first programming language.

He said:

"There may, indeed, be other
applications of the system than
its use as a logic."

Greatest technological
understatement of the 20th

century?

Alonzo Church, 1903-1995
Princeton Professor, 1929-1967

3

Alonzo Church
1934 -- developed lambda calculus

Alan Turing (PhD Princeton 1938)
1936 -- developed Turing machines

Programming Languages Computers

http://press.princeton.edu/chapters/s9780.pdf
Optional reading: The Birth of Computer Science at Princeton in the 1930s
by Andrew W. Appel, 2012.

4

A few designers of functional programming languages
5

Alonzo Church:
λ-calculus, 1934

John McCarthy
(PhD Princeton 1951)

LISP, 1958

Guy Steele & Gerry Sussman:
Scheme, 1975

A few designers of functional programming languages
6

Alonzo Church:
λ-calculus, 1934

Robin Milner
ML, 1978

Xavier Leroy: Ocaml, 1990’sAppel & MacQueen: SML/NJ, 1988

Vastly Abbreviated FP Geneology

LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(50s-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

7

Vastly Abbreviated FP Geneology

LCF Theorem
Prover (70s)

Edinburgh ML

Miranda (80s)

Haskell
(90s - now)

Standard ML
(90s - now) OCaml

(90s - now)

Caml
(80s-now)

F#
(now)

LISP
(50s-now)

Scheme
(70s-now)

lazy

typed, polymorphic

untyped

Coq
(80s - now)

dependently
typed

call-by-value

Racket
(00s-now)

Scala
(00s - now)

8

But Why Functional Programming Now?

• Functional programming will introduce you to new ways to
think about and structure your programs:
– new reasoning principles
– new abstractions
– new design patterns
– new algorithms
– elegant code

• Technology trends point to increasing parallelism:
– multicore, gpu, data center
– functional programming techniques such as map-reduce provide

a plausible way forward for many applications

9

Functional Languages: Who’s using them?

F# in Visual Studio

map-reduce in their data centers

Erlang for
concurrency,
Haskell for
managing PHP

Haskell to
synthesize hardware

Scala for
correctness, maintainability, flexibility

www.artima.com/scalazine/articles/twitter_on_scala.html
gregosuri.com/how-facebook-uses-erlang-for-real-time-chat
www.janestcapital.com/technology/ocaml.php
msdn.microsoft.com/en-us/fsharp/cc742182
labs.google.com/papers/mapreduce.html
www.haskell.org/haskellwiki/Haskell_in_industry

Haskell
for specifying
equity derivatives

mathematicians

Coq (re)proof of
4-color theorem

10

http://www.artima.com/scalazine/articles/twitter_on_scala.html
http://www.janestcapital.com/technology/ocaml.php

Functional Languages: Join the crowd

• Elements of functional programming are showing up all over
– F# in Microsoft Visual Studio

– Scala combines ML (a functional language) with Objects
• runs on the JVM

– C# includes “delegates”
• delegates == functions

– Python includes “lambdas”
• lambdas == more functions

– Javascript
• find tutorials online about using functional programming

techniques to write more elegant code

– C++ libraries for map-reduce
• enabled functional parallelism at Google

– Java has generics and GC

– ...

11

COURSE LOGISTICS

12

Course Staff

Christopher Moretti
Teaching Faculty
Head Preceptor

office: Corwin 036
email: cmoretti@cs

Chirag Bharadwaj
Grad Student

office: Fishbowl
email: chiragb@csMatt Weaver

Grad Student
office: Fishbowl
email: mzw@cs

David Walker
Professor

office: COS 211
email: dpw@cs

13

Friend 010
Qinshi Wang
Grad Student

office: Fishbowl
email: qinshi@cs

Andrew Wonnacott
Piazza Guru+

Resources
• coursehome:

– http://www.cs.princeton.edu/~cos326

• Lecture schedule and readings:
– $(coursehome)/lectures.php

• Assignments:
– $(coursehome)/assignments.php

• Precepts
– useful if you want to do well on exams and homeworks

• Install OCaml: $(coursehome)/resources.php

14

Collaboration Policy
The COS 326 collaboration policy can be found here:

Read it in full prior to beginning the first assignment.

Please ask questions whenever anything is unclear, at any time
during the course.

http://www.cs.princeton.edu/~cos326/info.php#collab

15

Course Textbook

http://realworldocaml.org/

16

Exams
Midterm
• take-home during midterm week

Final
• during exam period in January
• make your travel plans accordingly
• I have no control at all over when the exam occurs.

Unfortunately, it has often been at the end of exams

17

Assignment 0

Figure out how to download and install the latest version of
OCaml

on your machine by the time precept begins tomorrow.
(or, how to use OCaml by ssh to Princeton University servers)

Resources Page:

http://www.cs.princeton.edu/~cos326/resources.php

Hint:

ocaml.org

18

http://www.cs.princeton.edu/courses/archive/fall13/cos326/resources.php

Public Service Announcement

The Pen is Mighter than the Keyboard:
Advantages of Longhand Over Laptop Note Taking

Pam Mueller (Princeton University)
Daniel Oppenheimer (UCLA)
Journal of Psychological Science, June 2014, vol 25, no 6

http://pss.sagepub.com/content/25/6/1159.fullkeytype=ref&siteid=sppss&ijkey=CjRAwmrlURGNw

https://www.scientificamerican.com/article/a-learning-secret-don-t-take-notes-with-a-laptop/

• You learn conceptual topics better by taking notes by hand.
• We may need this experiment to be replicated a few more

times to gain confidence in the result.
• Instagram and Fortnite distract your classmates.

19

http://pss.sagepub.com/content/25/6/1159.fullkeytype=ref&siteid=sppss&ijkey=CjRAwmrlURGNw

A Functional Introduction

Thinking Functionally
In Java or C, you get (most) work done by changing something

In ML, you get (most) work done by producing something new

temp = pair.x;
pair.x = pair.y;
pair.y = temp; commands modify or change an

existing data structure (like pair)

let (x,y) = pair in
(y,x) you analyze existing data (like pair)

and you produce new data (y,x)

21

This simple switch in perspective can change the way you
think

about programming and problem solving.

22

Thinking Functionally

imperative code:

• outputs are irrelevant!
• output is not function of input
• data properties change
• unrepeatable
• parallelism hidden
• harder to test
• harder to compose

pure, functional code:

• outputs are everything!
• output is function of input
• data properties are stable
• repeatable
• parallelism apparent
• easier to test
• easier to compose

temp = pair.x;
pair.x = pair.y;
pair.y = temp;

let (x,y) = pair in
(y,x)

23

Why OCaml?
24

Small, orthogonal core based on the lambda calculus.

– Control is based on (recursive) functions.

– Instead of for-loops, while-loops, do-loops, iterators, etc.

• can be defined as library functions.

– Makes it easy to define semantics

Supports first-class, lexically-scoped, higher-order procedures
– a.k.a. first-class functions or closures or lambdas.

– first-class: functions are data values like any other data value
• like numbers, they can be stored, defined anonymously, ...

– lexically-scoped: meaning of variables determined statically.

– higher-order: functions as arguments and results
• programs passed to programs; generated from programs

These features also found in Scheme, Haskell, Scala, F#, Clojure,

Why OCaml?
25

Statically typed: debugging and testing aid
– compiler catches many silly errors before you can run the code.

• A type is worth a thousand tests (start at 6:20):
– https://www.youtube.com/watch?v=q1Yi-WM7XqQ

– Java is also strongly, statically typed.
– Scheme, Python, Javascript, etc. are all strongly, dynamically

typed – type errors are discovered while the code is running.
Strongly typed: compiler enforces type abstraction.

– cannot cast an integer to a record, function, string, etc.
• so we can utilize types as capabilities; crucial for local reasoning

– C/C++ are weakly-typed (statically typed) languages. The compiler
will happily let you do something smart (more often stupid).

Type inference: compiler fills in types for you

Installing, Running Ocaml
26

• OCaml comes with compilers:
– “ocamlc” – fast bytecode compiler
– “ocamlopt” – optimizing, native code compiler
– “ocamlbuild – a nice wrapper that computes dependencies

• And an interactive, top-level shell:
– occasionally useful for trying something out.
– “ocaml” at the prompt.
– but use the compiler most of the time

• And many other tools
– e.g., debugger, dependency generator, profiler, etc.

• See the course web pages for installation pointers
– also OCaml.org

Editing Ocaml Programs
27

• Many options: pick your own poison
– Emacs

• what I’ll be using in class.
• good but not great support for OCaml.
• I like it because it's what I'm used to
• (extensions written in elisp – a functional language!)

– OCaml IDE
• integrated development environment written in Ocaml.
• haven’t used it much, so can’t comment.

– Eclipse
• I’ve put up a link to an Ocaml plugin
• I haven't tried it but others recommend it

– Sublime, atom
• A lot of students seem to gravitate to this

XKCD on Editors
28

AN INTRODUCTORY EXAMPLE
(OR TWO)

29

OCaml Compiler and Interpreter
• Demo:

– emacs
– ml files
– writing simple programs: hello.ml, sum.ml
– simple debugging and unit tests
– ocamlc compiler

30

A First OCaml Program

hello.ml:

print_string “Hello COS 326!!\n";;

31

print_string “Hello COS 326!!\n"

A First OCaml Program

hello.ml:

a function its string argument
enclosed in "..."

a program
can be nothing
more than
just a single
expression
(but that is
uncommon)

32

no parens. normally call a function f like this:

f arg

(parens are used for grouping, precedence
only when necessary)

A First OCaml Program

print_string “Hello COS 326!!\n"

$ ocamlbuild hello.d.byte
$./hello.d.byte
Hello COS 326!!
$

hello.ml:

compiling and running hello.ml:

.d for debugging
(other choices .p for profiled; or none)

.byte for interpreted bytecode
(other choices .native for machine code)

33

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

a comment
(* ... *)sumTo8.ml:

38

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

the name of the function being defined

the keyword “let” begins a definition; keyword “rec” indicates recursion

sumTo8.ml:

39

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

result type int

argument
named n
with type int

sumTo8.ml:

40

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

deconstruct the value n
using pattern matching

data to be
deconstructed
appears
between
key words
“match” and
“with”

sumTo8.ml:

41

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

_

A Second OCaml Program

deconstructed data matches one of 2 cases:
(i) the data matches the pattern 0, or (ii) the data matches the variable pattern n

vertical bar "|" separates the alternative patterns

sumTo8.ml:

42

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

Each branch of the match statement constructs a result

construct
the result 0

construct
a result
using a
recursive
call to sumTo

sumTo8.ml:

43

(* sum the numbers from 0 to n
precondition: n must be a natural number

*)
let rec sumTo (n:int) : int =
match n with
0 -> 0

| n -> n + sumTo (n-1)

let _ =
print_int (sumTo 8);
print_newline()

A Second OCaml Program

print the
result of
calling
sumTo on 8

print a
new line

sumTo8.ml:

44

OCAML BASICS:
EXPRESSIONS, VALUES, SIMPLE TYPES

45

Terminology: Expressions, Values, Types
Expressions are computations

– 2 + 3 is a computation

Values (a subset of the expressions) are the results of computations
– 5 is a value

Types describe collections of values and the computations that
generate those values

– int is a type

– values of type int include
• 0, 1, 2, 3, …, max_int
• -1, -2, …, min_int

46

Some simple types, values, expressions
47

Type: Values: Expressions:
int -2, 0, 42 42 * (13 + 1)
float 3.14, -1., 2e12 (3.14 +. 12.0) *. 10e6
char ’a’, ’b’, ’&’ int_of_char ’a’
string "moo", "cow" "moo" ^ "cow"
bool true, false if true then 3 else 4
unit () print_int 3

For more primitive types and functions over them,
see the OCaml Reference Manual here:

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html

Evaluation
48

42 * (13 + 1)

Evaluation
49

42 * (13 + 1) -->* 588

Read like this: “the expression 42 * (13 + 1) evaluates to the value 588”

The “*” is there to say that it does so in 0 or more small steps

Evaluation
50

42 * (13 + 1) -->* 588

Read like this: “the expression 42 * (13 + 1) evaluates to the value 588”

The “*” is there to say that it does so in 0 or more small steps

Here I’m telling you how to execute an OCaml expression --- ie, I’m telling you
something about the operational semantics of OCaml

More on semantics later.

Evaluation
51

42 * (13 + 1) -->* 588

(3.14 +. 12.0) *. 10e6 -->* 151400000.

int_of_char ’a’ -->* 97

"moo" ^ "cow" -->* “moocow”

if true then 3 else 4 -->* 3

print_int 3 -->* ()

Evaluation
52

1 + "hello" -->*						???	

Evaluation
53

1 + "hello" -->*						???	

“+” processes integers
“hello” is not an integer
evaluation is undefined!

Don’t worry! This expression doesn’t type check.

Aside: See this talk on Javascript:
https://www.destroyallsoftware.com/talks/wat

OCAML BASICS:
CORE EXPRESSION SYNTAX

55

Core Expression Syntax
56

The simplest OCaml expressions e are:
• values numbers, strings, bools, ...
• id variables (x, foo, ...)
• e1 op e2 operators (x+3, ...)
• id e1 e2 … en function call (foo 3 42)
• let id = e1 in e2 local variable decl.
• if e1 then e2 else e3 a conditional
• (e) a parenthesized expression
• (e : t) an expression with its type

A note on parentheses
57

In most languages, arguments are parenthesized & separated by commas:

f(x,y,z) sum(3,4,5)

In OCaml, we don’t write the parentheses or the commas:

f x y z sum 3 4 5

But we do have to worry about grouping. For example,

f x y z
f x (y z)

The first one passes three arguments to f (x, y, and z)
The second passes two arguments to f (x, and the result of applying the

function y to z.)

OCAML BASICS:
TYPE CHECKING

58

Type Checking
Every value has a type and so does every expression

This is a concept that is familiar from Java but it becomes more
important when programming in a functional language

We write (e : t) to say that expression e has type t. eg:

2 : int "hello" : string

2 + 2 : int "I say " ^ "hello" : string

59

Type Checking Rules
There are a set of simple rules that govern type checking

– programs that do not follow the rules will not type check and
O’Caml will refuse to compile them for you (the nerve!)

– at first you may find this to be a pain …

But types are a great thing:
– help us think about how to construct our programs
– help us find stupid programming errors
– help us track down errors quickly when we edit our code
– allow us to enforce powerful invariants about data structures

60

Type Checking Rules
Example rules:

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

61

Type Checking Rules
Example rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3) (4)

62

Type Checking Rules
Example rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

63

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

64

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

65

Type Checking Rules
Example rules:

Using the rules:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

2 : int and 3 : int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5 : int (By rule 1)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

66

Type Checking Rules

Example rules:

Using the rules:

if e1 : int and e2 : int

then e1 + e2 : int

if e1 : int and e2 : int

then e1 * e2 : int

if e1 : string and e2 : string

then e1 ^ e2 : string

if e : int

then string_of_int e : string

2 : int and 3 : int. (By rule 1)

Therefore, (2 + 3) : int (By rule 3)

5 : int (By rule 1)

Therefore, (2 + 3) * 5 : int (By rule 4 and our previous work)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

FYI: This is a formal proof
that the expression is well-

typed!

67

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

???? * ???? : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

68

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

7 * ???? : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

69

Type Checking Rules
Example rules:

Another perspective:

if e1 : int and e2 : int
then e1 + e2 : int

if e1 : int and e2 : int
then e1 * e2 : int

if e1 : string and e2 : string
then e1 ^ e2 : string

if e : int
then string_of_int e : string

7 * (add_one 17) : int

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

rule (4) for typing expressions
says I can put any expression
with type int in place of the ????

70

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

#

71

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;

72

use “;;”
to end
a phrase
in the
top level

(“;;” can also end a top-level phrase in a file, but I’m going to avoid using it there because then some of you will confuse it with a ”;” ….)

Type Checking Rules
You can always start up the OCaml interpreter to find out a type
of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4

press
return
and you
find out
the type
and the
value

73

Type Checking Rules
• You can always start up the OCaml interpreter to find out a

type of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4
“hello ” ^ “world”;;
- : string = “hello world”
#

press
return
and you
find out
the type
and the
value

74

Type Checking Rules
• You can always start up the OCaml interpreter to find out a

type of a simple expression:

$ ocaml
Objective Caml Version 3.12.0

3 + 1;;
- : int = 4
“hello ” ^ “world”;;
- : string = “hello world”
#quit;;
$

75

Type Checking Rules

Example rules:

Violating the rules:

if e1 : int and e2 : int

then e1 + e2 : int

if e1 : int and e2 : int

then e1 * e2 : int

if e1 : string and e2 : string

then e1 ^ e2 : string

if e : int

then string_of_int e : string

"hello" : string (By rule 2)

1 : int (By rule 1)

1 + "hello" : ?? (NO TYPE! Rule 3 does not apply!)

0 : int (and similarly for any other integer constant n)

"abc" : string (and similarly for any other string constant "…")(2)

(1)

(3)

(5)

(4)

(6)

76

• Violating the rules:

• The type error message tells you the type that was expected
and the type that it inferred for your subexpression

• By the way, this was one of the nonsensical expressions that
did not evaluate to a value

• It is a good thing that this expression does not type check!
“Well typed programs do not go wrong”

Robin Milner, 1978

Type Checking Rules
Violating the rules:

The type error message tells you the type that was expected and
the type that it inferred for your subexpression
By the way, this was one of the nonsensical expressions that did
not evaluate to a value
It is a good thing that this expression does not type check!

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

77

Type Checking Rules
Violating the rules:

A possible fix:

One of the keys to becoming a good ML programmer is to
understand type error messages.

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

"hello" ^ (string_of_int 1);;
- : string = "hello1"

78

Type Checking Rules
What about this expression:

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?

3 / 0 ;;
Exception: Division_by_zero.

79

Type Checking Rules

What about this expression:

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?

– In general, detecting a divide-by-zero error requires we know that
the divisor evaluates to 0.

– In general, deciding whether the divisor evaluates to 0 requires
solving the halting problem:

There are type systems that will rule out divide-by-zero errors, but
they require programmers supply proofs to the type checker

3 / 0 ;;
Exception: Division_by_zero.

3 / (if turing_machine_halts m then 0 else 1);;

80

Isn’t that cheating?
“Well typed programs do not go wrong”

Robin Milner, 1978

(3 / 0) is well typed. Does it “go wrong?” Answer: No.

“Go wrong” is a technical term meaning, “have no defined
semantics.” Raising an exception is perfectly well defined
semantics, which we can reason about, which we can handle in
ML with an exception handler.

So, it’s not cheating.

(Discussion: why do we make this distinction, anyway?)

81

Type Soundness
“Well typed programs do not go wrong”

Programming languages with this property have
sound type systems. They are called safe languages.

Safe languages are generally immune to buffer overrun
vulnerabilities, uninitialized pointer vulnerabilities, etc., etc.
(but not immune to all bugs!)

Safe languages: ML, Java, Python, …

Unsafe languages: C, C++, Pascal

82

Well typed programs do not go wrong
• Violating the rules:

• The type error message tells you the type that was expected
and the type that it inferred for your subexpression

• By the way, this was one of the nonsensical expressions that
did not evaluate to a value

• It is a good thing that this expression does not type check!
“Well typed programs do not go wrong”

Robin Milner, 1978

Robin Milner

Turing Award, 1991

“For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable Functions, probably
the first theoretically based yet practical tool for machine assisted proof
construction;

2. ML, the first language to include polymorphic type inference together with
a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction, the study of
the relationship between operational and denotational semantics.”

83

OVERALL SUMMARY:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

84

OCaml
OCaml is a functional programming language

– Java gets most work done by modifying data

– OCaml gets most work done by producing new, immutable data

OCaml is a typed programming language

– the type of an expression correctly predicts the kind of value
the expression will generate when it is executed

– types help us understand and write our programs
– the type system is sound; the language is safe

85

