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COS 326   Functional Programming ___  Princeton University____  Final Exam, January 18, 2016 

Name (print clearly): 

Login: 

You are allowed to bring a hand-written sheet (8.5x11in page, one side) into the exam containing 
any information you want.  Other than that, the work on this exam must be your own, closed-book.  

Honor Pledge and signature:  

 

 

 

 

General Instructions: 

• Write your name and login on this page.  Write and sign the Honor Code pledge on this 
page.  Write your name and login on an exam booklet  (no need to write the pledge again). 

• You have 3 hours to complete this exam. 
• There are 6 parts to the exam (each part may have several questions).  Write answers in 

the spaces provided.   We will give partial credit on questions.  So part of a solution, if it is 
correct, or at least sensible, is better than no solution at all. 

• Minor errors in OCaml syntax will not be penalized significantly, if at all.  However, we have 
no choice but to penalize errors that render a solution incomprehensible. 

• If you cannot complete the details of a proof but can show that you know how to structure 
the proof, you will receive some credit.  Show that you know how to break down a proof 
into appropriate cases.  Show that you know what the induction hypothesis is by writing it 
down clearly.  Show that you know what must be proven. Do not give two answers to a 
question hoping that one of them is correct.  If you give two different answers to a question, 
you will receive no credit if one of the answers is correct and one is incorrect.  If ambiguous, 
circle the answer you intend. 
 
 

Grades on the 6 parts: 

1 __________ / 2              4 ___________ / 17 Total __________ / 71 

2__________ / 4  5 ___________ / 20 

3__________ / 8  6 ___________ / 20 

 

There are 7 pages in all 
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PART 1. This paragraph is copied verbatim from Assignment 7: 

A naive implementation of the mapreduce function would first call map and then call 
reduce. However, such an implementation would create an unnecessary intermediate 
sequence from the map that would subsequently be used solely for the reduce. This leads to 
extra copying that can hinder performance. A better approach would be to combine the map 
and reduce functions in a single pass over the data. Be wary of creating intermediate data 
structures in your implementation. 

There is a single-word technical term that describes this concept;   

write it here: ________________________________________________ 

 

PART 2.   As you learned in your Algorithms class (such as COS 226), quicksort takes O(NlogN) time 
and quick-select takes O(N) average-case time.  Quick-select finds the median element of a 
sequence, or more generally, the kth-largest element. 
 
Based on the parallel quicksort algorithm presented in lecture, fill in the blanks, then explain your 
answers in 50 words or less.  You don’t have to present the full algorithm, you assume we are 
familiar with the algorithm for quicksort presented in lecture. 
 
In parallel, average-case,  
 
Quicksort can sort a sequence in O(__________________) work and O(_____________________) span. 
 
 
Quick-select can find the median in  O(__________________) work and O(_____________________) span. 
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PART 3.  Match each of these computer scientists with their award citation: 

___ Edsger Dijkstra 

___ Tony Hoare 

___ Xavier Leroy 

___ Barbara Liskov 

___ John McCarthy 

___ David MacQueen 

___ Robin Milner 

___ Simon Peyton Jones 

 

A. Turing Award “For three distinct and complete achievements: LCF, the first theoretically 
based yet practical tool for machine assisted proof construction; ML, the first 
language to include polymorphic type inference together with a type-safe exception-
handling mechanism; CCS, a general theory of concurrency.” 

B. Turing Award “For contributions to practical and theoretical foundations of programming 
language and system design, especially related to data abstraction, fault tolerance, and 
distributed computing.”  That is, modules with representation hiding. 

C. Turing Award “For fundamental contributions to the definition and design of programming 
languages” including “Communicating Sequential Processes.” 

D. Turing Award for many contributions to Artificial Intelligence including the LISP 
programming language. 

E. Turing Award “For fundamental contributions to programming as a high, intellectual 
challenge; for eloquent insistence and practical demonstration that programs should be 
composed correctly, not just debugged into correctness;” including the use of a stack for 
recursive functions, graph algorithms such as shortest-path, and the invention of 
“semaphores” for synchronizing shared-memory concurrent programs. 

F. ACM Fellow “For significant research contributions in type theory and programming 
language design, especially for work on the design and implementation of Standard ML” and 
the ML module system. 

G. ACM Fellow “For contributions to safe, high-performance functional programming 
languages and compilers, and to compiler verification” such as the OCaml compiler and the 
CompCert verified C compiler. 

H. ACM Fellow “For contributions to functional programming languages” including the Haskell 
programming language. 
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PART 4.   Consider these four functions: 
 
let a (f: int->int->int) (z: int) (n: int) : int = 
  let rec aux i = 
    if i<=0 then z else f i (aux (i-1)) 
  in aux n 
 
let b (f: int->int->int) (z: int) (n: int) : int = 
  let rec aux i x = 
    if i<=0 then x else aux (i-1) (f i x) 
  in aux n z 
 
let c (f: int->int->int) (z: int) (n: int) : int = 
  let rec aux i x = 
    if i>n then x else aux (i+1) (f i x) 
  in aux 1 z 
 
let rec d (f: int->int->int) (z: int) (n: int) : int = 
 let rec aux i j = 
  if i>j then z 
  else if i=j then i 
  else let k = (i+j)/2 
       in f (aux (k+1) j) (aux i k)  
  in aux 1 n 
 
Q1.  Assuming that f is not recursive (and does not call any recursive functions),  
assuming that the ML compiler handles tail calls efficiently, what is the asymptotic space usage of 
each of these functions, as a function of n? 
 
a ____________________       b ____________________       c ____________________       d ____________________        
 
Q2.  What properties must f and z have such that  for all n,    a f z n = b f z n     ? 
(Don’t prove it.  Using a page in the exam booklet to work this out, set n=4, simplify as much as 
possible, then eyeball it.  Use standard mathematical terminology to describe the properties.) 
 
 
 
 Q3.  What properties must f and z have such that  for all n,    a f z n = c f z n     ? 
 
 
 
 
Q4.  What properties must f and z have such that  for all n,    a f z n = d f z n     ? 
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PART 5.  The following program implements “recent lists.”  Recent lists are like lists, but you can 
only access the front 4 elements. 

module type RECENT = 
  sig 
    type 'a t 
    val create: 'a -> 'a -> 'a -> 'a -> 'a t 
    val cons: 'a -> 'a t -> 'a t 
    val nth: 'a t -> int -> 'a option 
  end 
 
module R : RECENT = 
  struct 
    type 'a t = 'a list 
    let create a b c d = [a;b;c;d] 
    let cons a r = a::r 
    let nth r i =     if 0 <= i && i < 4      then Some (List.nth r i)      else None 
  end 
 
let force (x: 'a option) : 'a =     match x with Some i -> i 
 
let rec step (r: int R.t) =    Recent.cons (force (R.nth r 0) + force (R.nth r 1)) r 
 
let rec repeat n g r =   if n<=0 then r else repeat (n-1) g (g r) 
 
let f i = force (R.nth (repeat i step (R.create 1 1 1 1)) 2) 
 
let mylist = List.map f [1;2;3;4;5;6] 
 
ANSWER THESE QUESTIONS IN AN EXAM BOOKLET.  PUT YOUR NAME ON THE BOOKLET  NOW! 
 
Q1.  Show the value of mylist. 
 
Q2.   The implementation of R.nth calls upon List.nth.  But List.nth raises an exception if the index is 
out of range.  Prove that R.nth will never raise an exception (no matter what client uses it, not just 
the example client shown here).   Prove using the methods and terminology taught in this course.  
State the most important 1- or 2-word technical term relevant to how you proved it, and underline it. 
 
Q3.  This implementation of Recent uses a data structure that can grow arbitrarily large.  Implement 
a module R2 : RECENT that “works the same” but uses a bounded-size data structure. 
 
Q4.  Prove that R2 “works the same” as R, whatever that means.  Part of the answer is to define 
formally what that means (in this case).  State the most important 1- or 2-word technical term 
relevant to how you proved it, and underline it. 
 
Q5.  Assume that no operation of R raises an exception; but the client’s “force” function can raise an 
exception.  Prove that the “step” function and the “f” function never raise an exception.         
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Operators for map-reduce programming 
These operations are from Assignment 7, plus sort and filter.  For this exam, you can assume each 
one of these runs in “Parallel,”  i.e., polylog span (assuming the function f runs reasonably fast). 

tabulate (f: int→’a) (n: int) : ‘a seq Create seq of length n, element i holds f(i) 

seq_of_array: ‘a array → ‘a seq Create a sequence from an array 

array_of_seq: ‘a seq → ‘a array Create an array from a sequence 

length: ‘a seq → int Return the length of the sequence 

empty: unit → ‘a seq Return the empty sequence 

cons: ‘a → ‘a seq → ‘a seq (nondestructively) cons a new element on the 
beginning 

singleton: ‘a → ‘a seq Return the sequence with a single element 

append: ‘a seq → ‘a seq → ‘a seq (nondestructively) concatenate two sequences 

nth: ‘a seq → int → ‘a Get the nth value in the sequence. Indexing is zero-
based. 

map (f: ‘a → ‘b) → ‘a seq → ‘a seq Map the function f over a sequence 

reduce (f: ‘a → ‘a → ‘a) (base: ‘a): 
      ‘a seq → ‘a 

Fold a function f over the sequence.  
f must be associative, and base must be the unit for f. 

mapreduce: (‘a→’b)→(‘b→’b→’b)→ 
   ‘b → ‘a seq → ‘b Combine the map and reduce functions. 

flatten: ‘a seq seq → ‘a seq flatten [[a0;a1]; [a2;a3]] = [a0;a1;a2;a3] 

repeat (x: ‘a) (n: int) : ‘a seq repeat x 4 = [x;x;x;x] 

zip: (‘a seq * ‘b seq) → (‘a * ‘b) seq zip [a0;a1] [b0;b1;b2] = [(a0,b0);(a1,b1)] 

split: ‘a seq → int → ‘a seq * ‘a seq split [a0;a1;a2;a3] 1= ([a0],[a1;a2;a3]) 

scan: (‘a→’a→’a) → ‘a →  ‘a seq → ‘a seq scan f b [a0;a1;a2;…] =  
      [f b a0; f (f b a0) a1; f (f (f b a0) a1) a2; ...] 

sort: (‘a→’a→int) → ‘a seq → ‘a seq sort compare [3;1;4;1;5] = [1;1;3;4;5] 

filter: (‘a→bool) → ‘a seq → ‘a seq filter even [3;1;4;1;5;9;2;6] = [4;2;5] 
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PART 6.  Write a parallel map-reduce algorithm 
for graph reachability.  
 
A directed graph is represented by ordered pairs: 
 
[(3,8); (5,11); (7,11); (7,8); (8,9); (3,10); (11,2);(11,9); (11,10) ] 
 
Given:  list of ordered pairs G;  root node r;  a distance n;  
Produce:  a list of of pairs (i,d)  where i is a node reachable in d≤n hops from r, or (i,∞) if i is not 
reachable within n hops. 
 
Write an algorithm using the map-reduce operators shown in the table.   You can assume that n is 
small, and you are permitted to use span proportional to n.  However, the out-degree of any node 
may be large!  And the node-numbers may be sparse (in the graph shown, nodes 1,4,6 don’t exist). 
 
Accomplish this using a packed-adjacency-list representation, illustrated below.  In the triple 
(i,k,m),   i is a node-number, k is the index in the “arrowheads” list of the first out-edge from i, and m 
is the number of out-edges from i (which will appear consecutively in the arrowheads list). 
 
Q1.  Show a map-reduce program that will produce “arrowheads” and “adjacency lists” from 
“sorted graph”.  Illustrate the sequence-values produced as intermediate results, on the example 
input shown; label these illustrations using variable names from your program. 
 
Q2.  Show a map-reduce program that will produce “answer for n+1” from “arrowheads”, 
“adjacency lists”, and “answer for n.”  Illustrate the sequence-values produced as intermediate 
results, on the example input shown; label these illustrations using variable names from your 
program. 
 
[(3,8); (5,11); (7,11); (7,8); (8,9); (3,10); (11,2);(11,9); (11,10)]                             (input graph) 
 
     0             1              2             3            4            5              6              7               8                (slot numbers) 
[(3,8)   ;  (3,10);  (5,11) ;  (7,8)  ; (7,11) ;  (8,9)  ;   (11,2)  ;  (11,9)  ;  (11,10)]      (sorted graph) 
 
[     8     ;      10   ;     11    ;      8     ;      11   ;     9       ;        2       ;      9        ;     10      ]     (arrowheads) 
 
[(2,0,0); (3,0,2); (5,2,1); (7,3,2); (8,5,1); (9,6,0); (10,6,0); (11,6,3)]                        (adjacency lists) 
 
[(2,∞);  (3,∞);    (5,0);     (7,∞);   (8,∞);   (9,∞);   (10,∞);    (11,∞)]      (answer for r=5, n=0)  
[(2,∞);  (3,∞);    (5,0);     (7,∞);   (8,∞);   (9,∞);   (10,∞);    (11,1) ]      (answer for r=5, n=1)  
[(2,2);   (3,∞);    (5,0);     (7,∞);   (8,∞);   (9,2);    (10,2);      (11,1) ]      (answer for r=5, n=2) 
 
ANSWER Q1 AND Q2 IN THE EXAM BOOKLET. 

 

What to do if you have extra time when you’ve finished everything:  Space out for 5 minutes, 
then copy over your answer to Part 6 or Part 5 so that it’s as clear and as readable as can be. 

3 0 2 1 2
   

1 0 0 


