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Machine learning doesn’t always work. Actually, in a fundamental way we should be surprised
that machine learning is even possible! Consider the problem of learning from examples an
unknown Boolean function f : {0, 1}D → {0, 1}, i.e., a function from a binary vector to a single
binary value. Our goal is to learn a deterministic Boolean formula for this unknown function,
using N examples {xn, yn}N

n=1 where xn ∈ {0, 1}D and yn ∈ {0, 1}. For notational convenience,
imagine that M of the yn are 1 and N − M are 0, and that the indices of the pairs are such
that y1, . . . , yM are the 1’s and yM+1, . . . , yN are the 0’s.

Suppose a new instance x′ arrives and we wish to predict whether it yields a 0 or 1 according to
the Boolean formula we are trying to estimate. If one of our training data matches x′ exactly, then
this is easy: we just return the yn for the match. But what if it doesn’t match one of our training
data? Why do we think our training data provides information about this unseen example? The
function we’re trying to learn could just be a binary vector with 2D entries in it and no structure,
with x just indexing into one of the dimensions. Knowing N < 2D of the entries in the vector does
not in general tell us anything at all about the other 2D − N .

To see this more clearly, we can come up with two functions that are both consistent with the
data, try to make minimal assumptions, but that make exactly opposite predictions for all out-of-
sample x′. The first such function tries to minimize its assumptions by being specific, that is, by
avoiding predicting a 1 unless it is certain about the label, based on the training set. It classifies
everything else as zero:

fspecific(x′) =
M󳕝

n=1

D󳕜
d=1

(xn,d ∧ x′d) ∨ (¬xn,d ∧ ¬x′d) . (1)

Another coherent function is to say that we want to be maximally general and that we should
classify things as 1 unless we know them to be zero. As such, it takes a liberal view and only
produces a zero if a matching zero example is in the data set. Otherwise, it produces a 1:

fgeneral(x′) = ¬
N󳕝

n=M+1

D󳕜
d=1

(xn,d ∧ x′d) ∨ (¬xn,d ∧ ¬x′d) . (2)

∗These notes are heavily influenced by Harvard CS181 course notes by Avi Pfeffer and David Parkes.
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These are both consistent with the training data and yet provide completely different answers for
every datum not in the training data. This should make it clear that we really don’t get anything
intrinsic from the training data itself about other unseen examples. We are going to have to make
additional assumptions about what kinds of functions we can consider, if we are going to be able
to generalize to out-of-sample data. Fitting the training data well is not enough.

Learning is induction. Induction is only possible if we are willing to posit structure that exists
in both data we have seen and data we have not yet seen.

That even after the observation of the frequent or constant conjunction of objects,
we have no reason to draw any inference concerning any object beyond those of which
we have had experience.
—David Hume, A Treatise of Human Nature, Book I, Part 3, Section 12

Inductive Bias
For learning to be possible, we must posit structure that enables generalization and we must have a
way to prefer some hypotheses about the world over others. The assumptions we make about this
structure—about the functions we try to capture with data—we call our inductive bias.

Broadly speaking, there are two kinds of inductive bias: restriction bias and preference bias.
A restriction bias says that only some kinds of hypotheses are possible. For example, when trying
to fit a Boolean function we might limit our functions to only consider conjunctive concepts. A
conjunctive concept is a Boolean function that can only be a logical AND over literals, i.e., over
single features or their negations.

A preference bias, on the other hand, is a kind of ranking over potential hypotheses. When two
hypotheses are both consistent with the data, then we choose the one with the higher ranking. The
most common approach to the construction of such a ranking is to specify a penalty function. For
example, we might penalize Boolean functions that have larger circuits, or require more clauses
in conjunctive normal form. Among hypotheses that explain the training data equally well, we
choose the one with the lowest penalty. Another approach to constructing a preference bias is to
have a search order through hypotheses, and stop the search when a hypothesis is encountered that
explains the training data sufficiently well. Thus the search process implicitly produces a preference
ordering on hypotheses.

The selection of an inductive bias is an extremely important aspect of machine learning. The
inductive bias is literally what sorts of things can be learned and generalized from. The No Free
Lunch Theorem1 shows that no inductive bias can in general be “the right one” across all universes;
for any set of target functions on which an inductive bias works well, it will work badly on the
complement of that set. It is tempting to try to do machine learning “without making assumptions”
but there is no such thing because generalization is not possible without assumptions. The important
thing is to be clear about what those assumptions are, and construct them carefully for the problem
you wish to solve.

1Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural Computation 8.7 (1996):
1341-1390.
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Overfitting and Underfitting
There are lots of ways that a machine learning algorithm can fail, but two of the big failure modes
arise from poor choice of inductive bias: underfitting and overfitting. Underfitting happens when the
hypothesis space is too restricted to capture important structure about the function being modeled,
even though that structure is present in the training data. Overfitting happens when the hypothesis
space is large enough that it is possible to fit noise in the training data that is not generalizable
structure. In both cases, test (out-of-sample) performance suffers, but when overfitting it appears
that the training is succeeding via low training error. As such, overfitting is one of the biggest
issues in machine learning, across almost all models and algorithms. The difficulty is a fundamental
tension between the objective of fitting the data well, and generalizing to new examples. Note in
particular, that “fitting the noise” does not necessarily only arise when the data are noisy; rather it
is possible for a learning algorithm to identify spurious patterns in noise-free but finite data sets.

Figure 1 gives an example of how overfitting can occur as the model becomes more flexible. In
this case, I generated 30 training data and 30 test data and fit regression weights to the training data
with least squares using polynomials of increasing degree. The xn in both training and test were
drawn uniformly from the interval [−5, 5] and the true function is y = 2 cos(x) − 2 tanh(x), with
noise variance σ2 = 1. Each figure shows the training and test losses in the bottom left, and then
they are all plotted together in Figure 2. In Figure 2 the overfitting phenomenon is clear: increasing
the flexibility of the model (increasing degree, shown on the horizontal axis) makes it possible to
reduce the training loss, while at some point that flexibility hurts generalization performance as
seen by the increase in test loss.

Overfitting can occur for a variety of reasons, such as:

Too few training data Small data sets are more likely to have spurious patterns that would not
arise with a larger training set. For example, if you only see the buildings on Princeton campus,
you might draw very strange conclusions about what all buildings must look like.

Noise in the data If the signal-to-noise ratio is bad in the data, it may be very hard to identify
structure that can be learned. Algorithms may instead try to predict from the noise.

The hypothesis space is too large When the hypothesis space is small, i.e., the inductive bias is
strong, the model is less likely to have the capacity to fit noise. Noise in the data are unlikely to
fit exactly onto a simple hypothesis. However, the richer the hypothesis space is, the greater the
possibility is that spurious signals can be latched onto in the training data, or that irrelevant features
can appear to impact the label.

The input space is high-dimensional Every time you add a feature (or a basis function!) there
is some chance that this feature will have random noise that happens to align with the label. This is
particularly problematic in domains where there are huge numbers of features that may not matter,
as in statistical genetics. Trying to limit the number of features is the motivation behind methods
that perform feature selection in machine learning and statistics.
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(f) Degree 5 polynomial
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(g) Degree 6 polynomial
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(h) Degree 7 polynomial
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(i) Degree 8 polynomial
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Figure 1: Fitting polynomials with least squares out to degree 11. There are 30 training data and
30 test data, both from the same distribution. The training and test losses are shown in the bottom
left of each figure.
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Figure 2: Test versus training losses, as a function of polynomial degree for the data and fits shown
in Figure 1. The training loss improves with increasing flexibility of the polynomial, and would go
to zero when the degree was high enough to go through all of the training data. Test loss decreases
initially, but then starts to increase again. This is the overfitting phenomenon.

Bias Versus Variance
One of the ways we understand underfitting versus overfitting is via the bias-variance tradeoff.
Imagine that there is a distribution over the inputs Pr(x) and some true function f (x). The
observations y that we get are the result of adding noise 󰂃 to f (x), where 󰂃 ∼ N(0,σ2). When we
get a set of N data, we can think of these data as being a random variable which I will denote as D.
We fit a model to this randomly chosen data set and get an approximate function f̂ (x). The thing
we want f̂ (x) to be good at is minimizing the expected squared error under the joint distribution
over x and y for some new datum.

Goal is to minimize: ED,x,y
󰀅
(y − f̂ (x))2

󰀆
. (3)

The expectation here is taken over three things: the dataset D that we used to train f̂ , the test
input x, and the test label y. There are two kinds of things we might worry about when thinking
about building a model and fitting f̂ to D: the bias of f̂ and the variance of f̂ . The variance of f̂
reflects the amount of fluctuation we get in our estimates when we get different data sets:

Var[ f̂ ] = ED,x
󰀅
( f̂ (x) − ED[ f̂ (x)])2

󰀆
. (4)
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Figure 3 demonstrates this in the same setup as was used to produce Figure 1. Twenty data sets were
generated from the same distribution and fit with polynomials of increasing degree, plotting each
of the functions. The variability of these functions around the mean is evident, and gets larger with
increasing degree. The squared bias of f̂ (x), on the other hand, is the expected squared deviation
of our estimate from the true underlying function:

Bias2[ f̂ ] = Ex
󰀅
(ED[ f̂ (x)] − f (x))2

󰀆
. (5)

Figure 4 illustrates the concept of bias. The mean f̂ (x) is shown for each degree of polynomial (as
computed from the samples in Figure 3), compared to the true function.

It turns out that we can rewrite Eqn. 3 as a sum of the variance of f̂ , the squared bias of f̂ , and
the observation noise variance σ2. First, recall that the variance of a random variable Z can be
written as the difference between its expected square and the square of its expectation:

Var[Z] = E[Z2] − E[Z]2 . (6)

We can use this identity to replace quantities like E[Z2] with V[Z] + E[Z]2 in the following:

ED,x,y
󰀅
(y − f̂ (x))2

󰀆
= ED,x,y

󰀅
y2 − 2y f̂ (x) + f̂ (x)2

󰀆
(7)

= Ex
󰀅
Ey[y2 | x] − 2Ey[y | x]ED[ f̂ (x)] + ED[ f̂ (x)2]

󰀆
(8)

= Ex
󰀅
Var[y | x] + f (x)2 − 2 f (x)ED[ f̂ (x)] + Var[ f̂ (x)] + ED[ f̂ (x)]2

󰀆
(9)

= σ2 + Ex
󰀅
Var[ f̂ (x)] + f (x)2 − 2 f (x)ED[ f̂ (x)] + ED[ f̂ (x)]2

󰀆
(10)

= σ2 + Ex
󰀅
Var[ f̂ (x)] + ( f (x) − ED[ f̂ (x))2

󰀆
(11)

= σ2 + Var[ f̂ ] + Bias2[ f̂ ] . (12)

This decomposition makes it clear that there really is no free lunch. If we make our models flexible,
we can reduce bias but at the cost of increasing the variance. If make our models simpler, we might
reduce variance but increase the expected gap between our fit and the truth. Figure 5 illustrates the
effect empirically using the data and samples from Figures 3 and 4. The expected squared error is
the sum of the squared bias, the variance, and the noise variance σ2.

Regularization
The discussion of overfitting and bias-variance tradeoff so far has been focused on model com-
plexity as expressed by increasing numbers of basis functions (and therefore increasing numbers of
parameters). In practice, complexity management is often done by directly penalizing the parame-
ters of the model, as referred to above as a preference bias. There are a wide variety of ways to do
this, that vary from simple counts to highly structured probabilistic models based on knowledge of
a physical system.

The most widely used regularization penalty, however, is to use an Lp norm on the parameters.
A norm in a vector space like RD is a generalized notion of the length of the vectors. We write the
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(g) Degree 6 polynomial
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Figure 3: This collection of figures illustrates the concept of variance as it arises in the bias-variance
tradeoff. These figures were produced by taking 60 data generated as in Figure 1, and then taking 20
random subsets of 30 data. For each of those 20 subsets, a line was fit using least squares, with the
basis specified. Each of those lines is shown along with the line that is the pointwise sample mean
— a Monte Carlo approximation to ED[ f̂ (x)]. In the bottom left of each figure is the estimated
variance, which can be seen to explode for high degrees due to large fluctuations at the boundaries.
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Figure 4: This sequence of figures illustrates the concept of bias as it applies to the bias-variance
tradeoff. The mean f̂ (x) from Figure 3 is plotted, along with the true f (x) and the gap between
them is shaded to show the magnitude of the difference. Note that as the model gets more flexible
due to higher degree polynomials, the gap shrinks. In the bottom left of each figure is shown the
Monte Carlo estimate of the squared bias. The reason the bias tends to go up again for larger
degrees is because the variance causes large Monte Carlo error in the estimate of ED[ f̂ (x)].
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larger degrees is because the variance causes large Monte Carlo error in the estimate of ED[ f̂ (x)].

p-norm of a vector z as

| |z | |p =
󰀣

D󳕗
d=1

|zd |p
󰀤1/p

. (13)

For p = 2 we get the usual Euclidean norm and that is what we will study here. However, don’t be
surprised to encounter L0, L1, and L∞ norms in different machine learning contexts out in the real
world.

In the case of linear regression, having a regularization penalty such as an L2 norm means
literally penalizing the length of the vector w as part of the objective function. That is, we’re saying
that larger weights represent more extreme—and therefore complex—models and that we’re willing
to absorb some amount of additional training error in order to have smaller parameters. We of course
have to decide just what that balance should be and so we introduce a new hyperparameter λ > 0
that governs it. For computational convenience, we often use a squared norm as the penalty:

L(w) = 1
N

N󳕗
n=1

(xT
nw − yn)2 +

λ

2
| |w | |22 =

1
2N

(Xw − y)T(Xw − y) + λ
2
wTw . (14)
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This regularization penalty has many names. It is sometimes called Tikhonov regularization and
sometimes weight decay for reasons that will be clearer when we discuss objectives that do not
have closed-form solutions. When this squared L2 norm is used in least-squares linear regression,
the overall setup is often called ridge regression.

Finding the optimal weights with ridge regression is not any harder than the usual ordinary
least squares setup, in fact it typically makes it easier because the additional term makes the linear
system better conditioned. We proceed as before and take the gradient with respect to w, set it to
zero and solve for w:

∇w

󰀝
1
N
(Xw − y)T(Xw − y) + λ

2
wTw

󰀞
=

1
N
XT(Xw − y) + λw = 0 (15)

XTXw − XTy + λw = 0 (16)
(XTX + λI)w = XTy (17)

w󰂏 = (XTX + λI)−1XTy (18)

Figure 6 finds the optimal weights using this formula for different values of λ across polynomials
of different degrees, all with the same data and setup as before. The value of λ is varied over a
wide range, from 10−3 to 107 and different fits are shown. Figure 7 shows the training and test
losses across these bases as a function of the penalty. As expected, the training loss is always worse
because the penalty is moving the optimum toward zero. However, the test loss often improves up
to some “sweet spot” where the regularization is helping prevent a model from overfitting. This
effect is most dramatic with the higher-degree models that are most likely to overfit. For example,
the 12-degree polynomial cuts its test loss almost in half with λ = 1.

Penalized Maximum Likelihood
Just as we can penalized our loss-based objective functions, we can also perform penalized maxi-
mum likelihood and recover essentially the same solution with Gaussian observations. There is an
interesting interpretation of penalized maximum likelihood, however, that bears a brief discussion.
If you have studied statistics or probability previously, you may have noticed that I write the likeli-
hood function for regression as Pr(y | x, w, v) where by conditioning upon w and v I am elevating
them to the status of random variables rather than simple parameters governing the likelihood.
The reason for this is because in the penalized maximum likelihood case it provides a natural
Bayesian interpretation. Instead of finding single estimates of the regression weights w󰂏, what if
we examined the distribution induced over them using Bayes’ theorem? This would require a prior
distribution over the parameters w, which we will I will denote here as Pr(w). Bayes’ theorem is
essentially an identity of the calculus of probability that tells us how to “invert” a generative model
that went from parameters to data; it lets us go from data to parameters instead:

Pr(w | {xn, yn}N
n=1, v) =

Pr({yn}N
n=1 | {xn}N

n=1, w, v) Pr(w)
Pr({yn}N

n=1 | {xn}N
n=1, v)

, (19)
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(b) Degree 1 polynomial
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(c) Degree 2 polynomial
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(d) Degree 3 polynomial
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(e) Degree 4 polynomial

�4 �2 0 2 4
x

�8

�6

�4

�2

0

2

4

6

y

train

test

�(x) = [1, x, · · · , x5]

(f) Degree 5 polynomial
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(g) Degree 6 polynomial
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(h) Degree 7 polynomial
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(i) Degree 8 polynomial
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(j) Degree 9 polynomial
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(k) Degree 10 polynomial
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(l) Degree 11 polynomial

Figure 6: This sequence of figures illustrates the effect of a squared L2 penalty on the different
polynomial bases we have previously looked at in this note, with the same data and the same
linear regression setup. In each of these figures there is a set of green lines corresponding to
logarithmically increasing values of λ, i.e., λ = 10−3, 10−2, . . . , 107. As the penalty gets larger, the
weights shrink toward zero and the line becomes just f (x) = 0.
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(a) Effect of L2 penalty on training loss
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(b) Effect of L2 penalty on test loss

Figure 7: These figures show how the loss varies for the different polynomial regression setups, as
a function of squared L2 penalty on the weights. These are summaries of the fits shown in Figure 6.
The penalty is varied over orders of magnitude. Note that it always makes training loss worse
because it strictly reduces the ability of the parameters to fit the data. However, the test losses often
improve for some regions of λ.

where the denominator Pr({yn}N
n=1 | {xn}N

n=1, v) is a constant that does not depend on w and that we
can ignore for now. As in the MLE linear regression case, we will use a Gaussian likelihood:

Pr({yn}N
n=1 | {xn}N

n=1, w, v) = Pr(y | X, w, v) = |2vπ |−N/2 exp
󰀝
− 1

2v
(Xw − y)T(Xw − y)

󰀞
. (20)

With the prior we have flexibility much like we would when specifying a penalty. We have been
thinking a lot about Gaussian distributions, so let’s use a zero-mean Gaussian distribution for our
prior, with covariance matrix v

λ I. So:

w | λ, v ∼ N(w | 0, v
λ

I) (21)

Pr(w) =
󰀕
2πv
λ

󰀖−N/2
exp

󰀝
− λ

2v
wTw

󰀞
. (22)

Now we have the tools we need to compute the posterior distribution over w given the observed
data. There are various constants that don’t depend on w (including the denominator of Bayes’
theorem) and so we can ignore them by writing the bit that determines the proportionality:

Pr(w | X, y, v, λ) ∝ exp
󰀝
− 1

2v
(Xw − y)T(Xw − y) − λ

2v
wTw

󰀞
. (23)

In case it’s unclear why I feel comfortable doing this, the reason is because I always know that
probability distributions have to integrate to one. All I have to do is keep the factors that depend
on w and I can always normalize it to get the constants back. This is a useful thing to remember so
you don’t have to keep track of terms like (2π)−N/2.

One question I might want to ask about this posterior distribution over w is “what is its mode?”
That is, under my posterior distribution, what is the most probable w? When we use the mode
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of a posterior as an estimate, we call it the maximum a posteriori or MAP estimate. If you spend
much time on machine learning, you will hear about the MAP estimate many times even outside of
a formally Bayesian context. Our method for finding the MAP estimate in this case looks exactly
like it did when we maximized the likelihood: we take the log, compute the gradient, set it to zero,
and then solve for w.

∇w log Pr(w | X, y, v, λ) = −1
v
XT(Xw − y) − λ

v
w = 0 (24)

XTXw − XTy + λw = 0 (25)
(XTX + λI)w = XTy (26)

wMAP = (XTX + λI)−1XTy (27)

This is exactly the same solution we got in Eqn. 18. Just like we realized when talking about MLE
with Gaussian observations as being a probabilistic interpretation of least squares, we can see that
MAP estimation with a zero-mean Gaussian prior is the same as introducing a squared L2 penalty
on the parameters.

Changelog
• 26 September 2018 – Initial version.

• 27 September 2018 – Fixed some typos in figures.

• 2 October 2018 – Should be precise and say “covariance matrix” rather than “covariance”
when referring to the Gaussian distribution.
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