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One of the challenges of the analysis of high-dimensional data is visualization. That is, we
have a problem in which our data are, say, vectors of length 1000. We perhaps believe that there is
interesting structure present, but we have no easy way to find it to study. The class of unsupervised
learning techniques called dimensionality reduction provides one strategy for such visualization.
The central idea is to find an alternative representation of the data that is, say, two dimensional. Our
brains may have difficult time with 1000-dimensional data, but they are well-suited to reasoning
about two or three dimensional spaces. The challenge is that there are many ways to turn 1000-
dimensional data into two-dimensional data. Which one should we choose? Principal component
analysis (PCA) provides one answer to that question. PCA is a classical technique for finding
low-dimensional representations which are linear projections of the original data.

Concretely, let’s imagine that we have N data, which are vectors xn ∈ RD. When we perform
dimensionality reduction, we want to find some new set of representations {yn}N

n=1 — one yn ∈ RK

for each of our original data xn — with the property that K < D. Since PCA is a linear method, it
looks for a good linear map U from RD to RK . This is a projection since K < D. There are many
such projections, however — as many as there are K × D matrices U . Which one do we pick? One
restriction is that PCA requires that the rows of U form an orthonormal basis for a K-dimensional
subspace of RD. An orthonormal basis for RD is a set of unit-length vectors {ud}D

d=1, which are all
orthogonal to each other. That is,

uT
dud ′ = δd,d ′ =

󰀫
1 if d = d′

0 if d 󲧰 d′ . (1)

Here δd,d ′ is the Kronecker delta function. If the rows of U are an orthonormal basis, then that
means that UUT = IK , where IK denotes the K × K identity matrix. The restriction to orthonormal
matrices still doesn’t quite get us a unique linear projection for the data, however. There are many
such bases (effectively corresponding to many possible rotated K-dimensional subspaces) and we
pick the one that best captures the structure of the data using ideas that come up frequently in
unsupervised learning. In fact, there are two equivalent ways to find the PCA matrix, using two
different criteria for what it means to find structure in data. Interestingly, it turns out that both of
these views feel very much like the intuitions behind K-Means clustering! The main difference is
that in K-Means we represented a datum by its closest cluster mean, whereas in PCA we represent
each datum by a point in a lower-dimensional subspace.
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Figures 1 and 2 should give you an idea as to how you might think about the results that PCA
provides. In Figure 1, I took the voting records of 104 senators in the 113th US congress on 172
bills and used PCA to project them into two dimensions. I then plotted their names in the projected
location and colored them according to party. If you’re more into sports, Figure 2 shows the same
kind of visualization, but using the per-game stats of a set of high-scoring NBA basketball players.
In both cases, you can see that the low-dimensional representation reveals structure in the space.
People with similar behaviors tend to be located near each other.

Figures 3, 4, and 5 give a different view of the results from PCA. Here what I’ve done is plotted
the principal component vectors as images – these are “directions” in image space. Figure 3 is the
result of PCA run only on the “8” digits from MNIST. Figure 4 is the result of PCA on all of the
MNIST digits. Figure 5 shows the same thing, but for the CIFAR-100 natural images.

1 The Reconstruction View of PCA
Recall that one of the ways we framed the clustering problem was in terms of reconstruction. This
is an appealing view of unsupervised learning and dimensionality reduction, in particular, because
it corresponds to learning a compression. That is, we are asking our learning procedure to find a
compact representation of data such that it can reproduce the original version closely. We hope
that if you can accurately reconstruct the data from the compressed representation, then somehow
that compressed representation captures all of the most salient statistical properties of the data,
i.e., the important stuff. K-Means clustering says that these important properties are well-captured
by a nearby point µk , while principal component analysis says that these important properties are
captured by a nearby point on a lower-dimensional subspace.

As described above, we have N data vectors xn ∈ RD. If we have an orthonormal basis {ud}D
d=1,

we can write each of these data as

xn = x̄ +
D󳕗

d=1
α
(n)
d ud , (2)

where x̄ is the mean of the data:

x̄ ≡ 1
N

N󳕗
n=1

xn , (3)

and the α(n)d are the inner products of the (centered) data with each of the D basis vectors:

α
(n)
d = (xn − x̄)Tud . (4)

You can think of α(n)d as telling us how much of xn is explained by the direction ud . Now, when
we have all D of the α(n)d for a datum n, we can perfectly represent xn. However, what if we instead
only had K < D basis vectors? Then we probably wouldn’t be able to represent xn exactly and we’d
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Figure 1: Two-dimensional representation of senators based on voting records. Parties are colored.
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Figure 2: Two-dimensional representation of NBA basketball players.
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Figure 3: The first eight principal components of just the ’8’ digits from MNIST.

wind up with an approximate version x̂n:

x̂n ≡ x̄ +
K󳕗

d=1
α
(n)
d ud . (5)

How bad is this approximation? As in K-Means, we can pull our our trusty squared-error loss
function and compare xn and x̂n:

Ln({ud}K
d=1) = (xn − x̂n)2. (6)

Now, we can plug our basis function expansions into both the original and its reconstruction:

Ln({ud}K
d=1) =

󰀣󰀣
x̄ +

D󳕗
d=1
α
(n)
d ud

󰀤
−
󰀣
x̄ +

K󳕗
d=1
α
(n)
d ud

󰀤󰀤2

Rewrite with mean and basis.

=

󰀣󰀣
D󳕗

d=1
α
(n)
d ud

󰀤
−
󰀣

K󳕗
d=1
α
(n)
d ud

󰀤󰀤2

The x̄’s cancel.

=

󰀣
D󳕗

d=K+1
α
(n)
d ud

󰀤2

The first K bases are in both sums.

Now we can take advantage of the orthonormality property (Equation 1) of the ud vectors and just
write this as:

Ln({ud}K
d=1) =

󰀣
D󳕗

d=K+1
α
(n)
d ud

󰀤2

=

D󳕗
d=K+1

󰀓
α
(n)
d

󰀔2
. (7)
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Figure 4: The first eight principal components of the MNIST training digits.
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Figure 5: The first 20 principal components of the CIFAR-100 image data.

At this point, you might be asking “Why are you writing the objective function on the left with
the ud , when it doesn’t appear on the right?”. Let’s fix that by plugging in Equation 4 and while
we’re at it, let’s sum over all of the N data for the overall objective:

L({ud}K
d=1) =

N󳕗
n=1

D󳕗
d=K+1

󰀓
(xn − x̄)Tud

󰀔2
. (8)

The intuition to have about this is that we’re penalizing the distance between the subspace defined
by {ud}K

d=1 and the data.
Let’s write out the square in Equation 8 explicitly and transpose the first bit. It’s just a scalar,
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so we can do this:

L({ud}K
d=1) =

N󳕗
n=1

D󳕗
d=K+1

󰀓
(xn − x̄)Tud

󰀔 󰀓
(xn − x̄)Tud

󰀔

=

N󳕗
n=1

D󳕗
d=K+1

uT
d(xn − x̄)(xn − x̄)Tud

=

N󳕗
n=1

D󳕗
d=K+1

uT
d

󰀓
(xn − x̄)(xn − x̄)T

󰀔
ud .

In this last step, I’ve put parentheses around the middle part, so that you can see it as a rank-
one D × D matrix. It’s a particularly interesting matrix, because it is the squared distance between
each dimension of xn and the mean vector x̄. We can swap the summations and push the sum
over n inside the quadratic form. Let’s multiply and divide by N , and push the 1/N inside the the
quadratic form also:

L({ud}K
d=1) = N

D󳕗
d=K+1

uT
d

󰀣
1
N

N󳕗
n=1

(xn − x̄)(xn − x̄)T
󰀤
ud . (9)

Suddenly now, we see that we have something really interesting here: that middle part is the sample
covariance matrix!1 This is an important matrix, so let’s give it its own symbol:

Σ ≡ 1
N

N󳕗
n=1

(xn − x̄)(xn − x̄)T. (10)

Recall that the objective here is to minimize L as a function of the K orthonormal vectors {ud}K
d=1

that define our linear projection. We can write that down explicitly (the N doesn’t matter because
we’re minimizing):

min

󰀫
D󳕗

d=K+1
uT

dΣud

󰀬
s.t. uT

dud = 1 . (11)

If we write this constrained objective using Lagrange multipliers, we get

N
D󳕗

d=K+1
uT

dΣud + λd(1 − uT
dud) . (12)

If we differentiate this in terms of a ud , set it equal to zero and then solve, we see something very
nice:

Σud = λdud . (13)

1You could do this with 1/(N − 1) and it would not make any practical difference.
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That is, the solutions will be eigenvectors of the sample covariance Σ. Now that we know the
orthonormality constraints will be satisfied, we can return to Equation 11:

min
D󳕗

d=K+1
uT

dΣud = min
D󳕗

d=K+1
uT

d(λdud) = min
D󳕗

d=K+1
λd .

Here we substituted in Equation 13 and then exploited the orthonormality of ud again. So, to
minimize this we need to find the D − K eigenvectors that have the smallest eigenvalues. That
means that the K eigenvectors we pick for our projection should be the eigenvectors with the largest
eigenvalues. Recall, by the way, that Σ is positive semi-definite, so all of the eigenvalues will be
nonnegative.

In summary, to minimize the reconstruction error of a data approximation determined by a set
of K orthonormal basis vectors, use the K eigenvectors of the sample covariance matrix with the
largest eigenvalues.

2 The Variance-Preservation View of PCA
Reconstruction is a nice intuition, but it’s not the only one. An alternative view of “salient statistical
structure” in a set of data might simply be “variance”. That is, when we find some lower-dimensional
representation of the data, we want to preserve the bits that matter and interestingly differentiate
things. Variability in the data is one such thing we might want to preserve. In the previous section,
we computed the sample mean x̄ and the sample covariance matrix Σ.

There are some identities for means and covariances that are very useful to know before we
go on. Consider a random vector z that is drawn from a Gaussian distribution with mean µ and
covariance S. It turns out that if you hit this vector with a matrix A to get Az, that the result is
also Gaussian and has mean Aµ and covariance ASAT.2 This is useful because it helps us think
about the properties of our projected data. Let’s think about the first dimension of our projected
data, u1, often called the first principal component. We want to choose this such that it maximizes
the variance of the projected data. Due to this covariance transformation property, we know that
the variance after projection will be uT

1Σu1. We want to maximize that, subject to the constraint
that u1 be unit length:

max uT
1Σu1 s.t. uT

1u1 = 1 . (14)

We can invoke Lagrange multipliers again and look to maximize

uT
1Σu1 + λ1(1 − uT

1u1) (15)

Taking the derivative in terms of u1 and setting it to zero, we see that at a stationary point

Σu1 = λ1u1 (16)

2For these and other useful Gaussian identities, see http://www.cs.nyu.edu/~roweis/notes/gaussid.pdf.
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so u1 must be an eigenvector. Furthermore,

uT
1Σu1 = λ1 , (17)

meaning that this variance is maximized by choosing the eigenvector with the largest eigenvalue.
For the second principal component, u2, we want to do the same thing, but make sure that our
solution is also orthogonal to u1:

max uT
2Σu2 s.t. uT

2u2 = 1 and uT
1u2 = 0 . (18)

We write down another Lagrangian:

uT
2Σu2 + λ2(1 − uT

2u2) + γuT
1u2 (19)

Differentiating in terms of u2, we get:

2Σu2 − 2λ2u2 + γu1 = 0 . (20)

If we now left-multiply by uT
1 :

uT
1 (2Σu2 − 2λ2u2 + γu1) = 0 (21)

✘✘✘✘✘2uT
1Σu2 −✘✘✘✘✘2λ2u

T
1u2 + γu

T
1u1 = 0 Due to orthonormality. (22)
γ = 0 (23)

Thus the constrained solution must satisfy

Σu2 = λ2u2 (24)

and so u2 is also an eigenvector. We can do the same thing we did for u1 to convince ourselves that
we want u2 to be the eigenvector with the second largest eigenvalue. We can iteratively perform
this procedure for any uk we want.

We can also think about this in a non-iterative way by thinking about how to maximize an
aggregate measure of variance in the projection, rather than going one dimension at a time. When
we have a covariance matrix S, the total variation is the sum of the marginal variances of each
dimension. It can easily be computed by looking at the trace of the matrix S. When performing
PCA one often discusses the “fraction of total variation” explained, which is the relative amount
of total variation in the projection compared to the original data. The idea is that when one is
explaining a large fraction of the variance with only a few principal components, then you have
a good low-dimensional representation. Figure 6 provides one way to visualize this, by plotting
variance (eigenvalue) as a function of principal component (eigenvector).

3 Singular Value Decomposition
Both of the approaches we have used so far to describe PCA have examined the spectrum of the
covariance matrix. It’s a little bit strange to do things, this way, however, because the covariance
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Figure 6: These figures show the variance as a function of principal component. That is, the vertical
axis is the eigenvalue associated with each eigenvector, going left to right. The drop-off of these
plots gives us an idea as to how many “effective dimensions” there are in the data.

matrix is itself a product of matrices. To see this easily, let’s imagine that we take all of our N
data vectors xn, transpose them, and stack them to make a matrix X that is N × D where we’ll be
assuming N > D. Let’s further imagine that we had zero-centered the data so that x̄ = 0. Then
the sample covariance matrix as we’ve been computing it here would be Σ = 1

N XTX . Singular
value decomposition (SVD) is a way to arrive at the same answer as PCA, but without having to
compute Σ first. As a result, SVD can be more numerically stable than PCA in practice.

Singular value decomposition computes the following factorization:

X = UΓVT, where (25)
U ∈ RN×D has orthonormal columns, i.e., UTU = ID (26)
Γ ∈ RD×D is diagonal with nonnegative entries (27)
V ∈ RD×D is orthonormal, i.e., VTV = ID. (28)

The diagonal entries of Γ are called the singular values. Note what happens when we write the
covariance matrix for centered data:

Σ =
1
N
XTX (29)

=
1
N

󰀓
UΓVT

󰀔T 󰀓
UΓVT

󰀔
(30)

=
1
N
VΓUTUΓVT (31)

=
1
N
VΓ2VT . (32)

Thus the columns of V are the eigenvectors we are looking for with PCA and the square roots of
the diagonal entries in Γ give us the eigenvectors, e.g., λd = Γd,d/N .
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4 Advanced Topics
Factor Analysis: What if we relax the orthonormality constraint on the projection? Factor
analysis is an alternative way to think about low-dimensional continuous structure in data. It has
a long history in statistics. PRML discusses it a bit in Section 12.2.4. You can also check out the
page on Metacademy.

Independent Component Analysis: When deriving principal component analysis, we made
heavy use of squared errors and covariance matrices. Gaussian assumptions, however, mean that it
will only be possible to recover latent structure up to a rotation. Independent component analysis
(ICA) replaces Gaussian assumptions with heavier- or lighter-tailed distributions, making it possible
to distinguish latent rotations. It is an important approach to difficult signal processing problems,
such as blind source separation. PRML discusses this in Section 12.4.1 and Metacademy also has
a page.

Multidimensional Scaling: When you want to cluster and you only have distances between
objects, K-Medoids is an appealing alternative to K-Means. Is there an equivalent for PCA when
you only have distances between your data? Multidimensional scaling (MDS) is one answer to this
question. Rather than trying to preserve variance or minimize reconstruction error, it tries to find a
low-dimensional embedding that preserves distances between data. PRML mentions MDS briefly
in section 12.4.3, but there is more information on Metacademy and the Wikipedia page.

Nonlinear Dimensionality Reduction: There is an increasingly large body of work on nonlinear
approaches to dimensionality reduction. Some important ideas in this area are Kernel PCA (See
PRML 12.3), Isomap, Locally Linear Embedding, and t-SNE. Laurens van der Maaten maintains
an excellent Matlab toolbox with implementations of many of these ideas.

Autoencoder Neural Networks: We often think of neural networks as a tool for supervised
learning, e.g., predicting a label in visual object recognition task. However, we can ask a neural
network to reproduce its input at its output instead, and turn it into an unsupervised learning tool
called an autoencoder. This sounds like a boring thing to do, but if we limit its capacity in some
way, then we force it to learn a compression of the data. In fact, it turns out that certain kinds
of autoencoders learn exactly the same thing as PCA. A good resource for some of these ideas is
DeepLearning.net. PRML also talks a bit about autoencoders in Section 12.4.2.

Changelog
• 2 November 2018 – Adapted CS181 notes.
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