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The key insight of neural networks for machine learning is that one can construct powerful
(effectively nonparametric) function approximators via the composition of differentiable functions.
The backpropagation algorithm is a way to compute the gradients needed to fit the parameters of
a neural network, in much the same way we have used gradients for other optimization problems.
Backpropagation is a special case of an extraordinarily powerful programming abstraction called
automatic differentiation (AD). As makes it possible to imperatively write code that computes a
function and then have access to the Jacobian of that function for a cost that is only a constant factor
worse than the function itself. There are two major flavors of AD, although these can be combined
in complicated ways: forward mode and reverse mode. Forward mode AD is a computational
abstraction that follows cleanly from our basic intuitions about the chain rule. Reverse mode,
however, is less obvious and it requires thinking about adjoint variables when computing the chain
rule. For the kinds of problems we study in machine learning, reverse mode is almost always what
we want, and backpropagation is a particular case of it applied to neural network architectures.

Adaptive Basis Function Regression
Our starting point for neural networks and backprop is to think about least squares regression
with basis functions. As before, we imagine we have a set of data {xn, yn}N

n=1 where xn ∈ X
and yn ∈ R. We define a vector function Φ : X → RJ that takes the data and transforms them into
a J-dimensional feature vector that we then use in a regression function via:

f (x) = wTΦ(x) + b . (1)

Here I am assuming the bias is separate from the basis. We can use a least squares loss function to
measure the quality of any particular w and that allows us to construct an overall objective:

w, b = arg min
w,b


1
2

N
n=1

(wTΦ(xn) + b − yn)2

. (2)

In this case we can solve for w analytically by solving a linear system, but often we can’t do that and
we must resort to tools like stochastic gradient descent (SGD). A typical SGD update rule would
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iterate and in each step take a small subset of the data (or even just a single example), compute the
gradient of the loss, and then take a step in the direction of the negative gradient:

w(t+1) ← w(t) − αΦ(xn)(wTΦ(xn) + b − yn) . (3)

Here α > 0 is a small constant called the learning rate.
Now, let’s imagine that we parameterize the function Φ(·) with some parameter vector θ ∈ RK ,

and make this clear by introducing it as a subscript, i.e., Φθ(θ). What these parameters are will
depend on the specifics of Φθ(·), but some simple examples for X = R and bases we’ve previously
discussed might be:

Φθ(x) =

xθ1 xθ2 · · · xθK

T (polynomial exponents)

Φθ(x) =

e−(x−θ1)

2/θ2 e−(x−θ3)
2/θ4 · · · e−(x−θK−1)2/θK

T
(RBF centers and scales)

Φθ(x) =

tanh(xθ1 + θ2) tanh(xθ3 + θ4) · · · tanh(xθK−1 + θK)

T (tanh scale and location)

Each of these Φθ(x) is differentiable with respect to both x and θ. With these new parameters, we
can reframe our overall objective function in terms of both w and θ:

L(w, b, θ) = 1
2

N
n=1

(wTΦθ(xn) + b − yn)2 . (4)

Our minimization problem is the same, just now with θ in the mix also as above:

w, b, θ = arg min
w,b,θ


1
2

N
n=1

(wTΦθ(xn) + b − yn)2

. (5)

To make gradient updates with respect to θ, we’re going to have to differentiate the objective with
respect to θ and that will require the chain rule.

Jacobians and the Chain Rule
We’ve talked a lot about gradients of scalar functions. However, now we’re going to be differen-
tiating vector functions and so now we will need to refresh ourselves on Jacobian matrices. If we
have a function f : RK → RJ , its Jacobian matrix is the matrix of all first derivatives:

Jz{ f (z)} =



∂
∂z1

f1 ∂
∂z2

f1 · · · ∂
∂zK

f1
∂
∂z1

f2 ∂
∂z2

f2 · · · ∂
∂zK

f2
...

...
. . .

...
∂
∂z1

fJ
∂
∂z2

fJ · · · ∂
∂zK

fJ


(6)
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In machine learning we tend to think of gradients (arguably incorrectly) as column vectors and so
in the case where J = 1, the Jacobian is the transpose of the gradient. We could also write the
Jacobian as a “stack” of transposed Jacobians:

Jz{ f (z)} =



(∇z f1)T
(∇z f2)T
...

(∇z fJ)T


. (7)

Neural networks are about composition of differentiable functions, and so the Jacobian is the key
object for reasoning about the gradients of these compositions. In particular, if we compose a
function g : RJ → RM the function f above, we get a function (g ◦ f ) : RK → RM with Jacobian:

J{g ◦ f } = J{g}J{ f } . (8)

This is the essence of the chain rule for vector functions.

Learning Basis Function Parameters
We now return to the problem of fitting the parameters θ to data via the optimization problem in
Eqn 5. This is a direct use of the chain rule above with the Jacobian of Φθ(x) with respect to θ:

∇θ


1
2

N
n=1

(wTΦθ(xn) + b − yn)2

= Jθ


1
2

N
n=1

(wTΦθ(xn) + b − yn)2
T

(9)

=
1
2

N
n=1

Jθ


(wTΦθ(xn) + b − yn)2

T (10)

=
1
2

N
n=1


Jz{wT z + b − yn)2}Jθ{Φθ(xn)}

T
(11)

=

N
n=1


(wTΦθ(xn) + b − yn)wTJθ{Φθ(xn)}

T
(12)

=

N
n=1

Jθ{Φθ(xn)}Tw(wTΦθ(xn) + b − yn) . (13)

To make it clear that we’re looking at a composition with Φθ(x), in Eqn 11 above I have used a
variable z as the thing we are differentiating with respect to. Just as a sanity check we can see that
this has the right dimensional structure. The Jacobian of Φθ(x) with respect to θ (not with respect
to x!) is a J × K matrix, and w has the dimension of the output of Φθ(x), and so is of length J.
Therefore the product of the transposed Jacobian and w gives a vector of length K , which is what
we want for the gradient of a scalar function with respect to θ.
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Having figured out this gradient, we can now write our overall update rules. Here I’m writing
them for batch (full-data) gradient descent:

w(t+1) ← w(t) − α
N

n=1
Φθ(xn)(wTΦθ(xn) + b − yn) (14)

b(t+1) ← b(t) − α
N

n=1
(wTΦθ(xn) + b − yn) (15)

θ(t+1) ← θ(t) − α
N

n=1
Jθ{Φθ(xn)}Tw(wTΦθ(xn) + b − yn) . (16)

In practice one might find that different learning rates work better for the different sets of parameters.
Note that unlike everything we have looked at so far, this objective is not likely to be convex. Gradient
descent may get stuck in various undesirable locations and not find a global minimum.

Automatic Differentiation
The chain rule above told us what we wanted but didn’t tell us how to compute it efficiently.
Automatic differentiation (AD) is a way to get these gradients efficiently without having to do
anything but write the objective function in computer code. AD is a very broadly applicable
technique and it has been studied for decades. Curiously however, it has traditionally only been
used in a limited way in machine learning despite the ubiquity of gradient-based optimization
problems in ML. It has only been recently that serious automatic differentiation (versus naïve hand-
coded backprop rules) have started to make their way into mainstream deep learning toolchains.
TensorFlow, for example, has the ability to compute gradients of the computational graphs it
supports with its limited domain-specific language, but it is not close to a full AD system. Automatic
differentiation can be implemented in a variety of ways, via run-time abstractions and also via source
code transformation.

Rather than talking about large neural networks, we will seek to understand automatic differen-
tiation via a small problem borrowed from the book of Griewank and Walther (2008). I will use
their notation here as well. We wish to compute various derivatives of the function

y = [sin(x1/x2) + x1/x2 − exp{x2}] × [x1/x2 − exp{x2}] , (17)

evaluated at x1 = 1.5 and x2 = 0.5. If we think about how we might write this to evaluate it in
a computer, we might introduce a set of variables that compute pieces and then assemble those
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pieces together compositionally:

va = x1 = 1.5000
vb = x2 = 0.5000
v1 = va/vb = 1.5/0.5 = 3.0000
v2 = sin(v1) = sin(3.0) = 0.1411
v3 = exp{vb} = exp{0.5} = 1.6487
v4 = v1 − v3 = 3.0 − 1.6487 = 1.3513
v5 = v2 + v4 = 0.1411 + 1.3513 = 1.4924
v6 = v5 × v4 = 1.4924 × 1.3513 = 2.0167
y = v6 = 2.0167

This is called an execution trace and we can also view it as a graph as in Figure ???. The
idea of forward mode automatic differentiation is that we can compute derivatives as we go and
that the chain rule says the overall derivative that we want is a composition of these incremental
computations. Let’s imagine that our overall goal is to compute ∂y

∂x1
for the example above. We

denote all of the intermediate partial derivatives with respect to x1 as vi =
∂vi
∂x1

. Returning to the
execution trace, we can get all of the vi just by doing a bit more work at each step.

va = x1 = 1.5000 (18)
va = 1.0000 (19)
vb = x2 = 0.5000 (20)
vb = 0.0000 (21)
v1 = va/vb = 1.5/0.5 = 3.0000 (22)
v1 = (vb va − va vb)/v2

b = (0.5 × 1.0 − 1.5 × 0)/0.252 = 2.0000 (23)
v2 = sin(v1) = sin(3.0) = 0.1411 (24)
v2 = cos(v1) × v1 = −0.99 × 2 = −1.9800 (25)
v3 = exp{vb} = exp{0.5} = 1.6487 (26)
v3 = v3 × vb = 1.6487 × 0.0 = 0.000 (27)
v4 = v1 − v3 = 3.0 − 1.6487 = 1.3513 (28)
v4 = v1 − v3 = 2.0 − 0 = 2.0000 (29)
v5 = v2 + v4 = 0.1411 + 1.3513 = 1.4924 (30)
v5 = v2 + v4 = −1.98 + 2.00 = 0.0200 (31)
v6 = v5 × v4 = 1.4924 × 1.3513 = 2.0167 (32)
v6 = v5v4 + v4v5 = 0.02 × 1.3513 + 1.4924 × 2.0 = 3.0118 (33)
y = v6 = 2.0167 (34)
y = v6 = 3.0118 (35)
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At the end, we have y = ∂y
∂x1

just by doing some more bookkeeping and computation along the
way. The interesting thing is that we can implement this bookkeeping just via abstraction. We can
replace our floating point numbers with tuples. In the above example, imagine that we replaced our
primitive functions with the following versions (in Python):
import numpy as np

def add(atuple, btuple):
(a, adot) = atuple
(b, bdot) = btuple
return ( a + b, adot + bdot)

def subtract(atuple, btuple):
(a, adot) = atuple
(b, bdot) = btuple
return (a - b, adot - bdot)

def multiply(atuple, btuple):
(a, adot) = atuple
(b, bdot) = btuple
return (a * b, adot * b + bdot * a)

def divide(atuple, btuple):
(a, adot) = atuple
(b, bdot) = btuple
return (a / b, (adot * b - bdot * a) / (b*b))

def exp(atuple):
(a, adot) = atuple
return (np.exp(a), np.exp(a)*adot)

def sin(atuple):
(a, adot) = atuple
return (np.sin(a), np.cos(a)*adot)

These functions assume they are handed both the values and the derivatives as arguments, and they
each perform a simple operation whose derivative they know how to compute and pass on. In
practice, you could use clever language features and overload the operators the language already
defines to be multiplication, division, etc. Regardless, these new abstractions let us write our simple
function in a direct way:
def myfunc(x1, x2):
a = divide(x1, x2)
b = exp(x2)
return multiply(subtract(add(sin(a), a), b), subtract(a, b))

This highlights why you might want to use operator overloading, but note that we just wrote the
function and not the derivative of the function. Nevertheless, if we use the function, we get the
derivative automatically:
>>> myfunc((1.5, 1.), (0.5, 0.))
(2.0167, 3.0118)
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Not also that myfunc can itself be used as a module in other compositions.
Reverse mode automatic differentiation proceeds differently. It computes the function, but

keeps around information about the structure of the graph and the intermediate variables that were
computed. Reverse mode AD then walks backwards through the graph and computes derivatives of
the output with respect to the local variable. This quantity is sometimes called an adjoint variable
and here we denote it as v̄i =

∂y
∂vi

. This is contrast to forward mode, which computed the derivative
of the local variable with respect to one of the inputs, denoted ii = ∂vi∂x1

above. Mathematically, the
adjoint is computed by looking at adjoints of the children of vertex vi on the graph:

v̄i =


j:child of i
v̄ j
∂v j

∂vi
(36)

Since the adjoints depend on the values of their children, we have to go all the way to the end and
work backwards:

va = x1 = 1.5000
vb = x2 = 0.5000
v1 = va/vb = 1.5/0.5 = 3.0000
v2 = sin(v1) = sin(3.0) = 0.1411
v3 = exp{vb} = exp{0.5} = 1.6487
v4 = v1 − v3 = 3.0 − 1.6487 = 1.3513
v5 = v2 + v4 = 0.1411 + 1.3513 = 1.4924
v6 = v5 × v4 = 1.4924 × 1.3513 = 2.0167
y = v6 = 2.0167

v̄6 = ȳ = 1.0
v̄5 = v4 × v̄6 = 1.3513 × 1.0 = 1.3513
v̄4 = v5 × v̄6 + v̄5 = 1.4924 × 1.0 + 1.3513 = 2.8437
v̄3 = −v̄4 = −2.8437
v̄2 = v̄5 = 1.3513
v̄1 = v̄2 cos(v1) + v̄4 = 1.3513 × −0.99 + 2.8437 = 1.5059
v̄b = v̄3v3 − v̄1va/v2

b = v̄3v3 − v̄1v1/vb = −2.8437 × 1.6487 − 1.5059 × 3/0.5 = −13.7239
v̄a = v̄1/vb = 1.5059/0.5 = 3.0118
x̄2 = v̄b = −13.7239
x̄1 = v̄a = 3.0118

Note that in this case we easily computed both x̄1 =
∂y
∂x1

and x̄2 =
∂y
∂x2

, i.e., we computed the
gradient ∇xy. This is what backpropagation does. You can see why neural network researchers
gave it this name, because the final loss is computing an error and this error is then propagated
backwards through the computational graph.
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There are various ways to implement this abstraction in its full generality, but an implementation
requires more code than can easily appear here. The three major approaches are:

source code transformation The adjoint backward pass code is generated a priori from the
forward computation. A clean Python example of such a system is Tangent, at https://github.
com/google/tangent.

graph-based This approach uses an embedded mini-language to specify a graph of computations
that can then be manipulated for function evaluations and gradients. The advantage of this approach
is that it is amenable to intelligent graph optimizations and use of compilers. The embedded
mini-language also makes it possible to build specialized hardware that targets the differentiable
primitives. The downside of this approach is that you are not coding in the host language (e.g.,
Python) and so you can’t take advantage of its imperative design and control flow. Generally the
mini-language is less expressive than the host language. Also, the lazy execution of the function
represented by the graph can make it difficult to debug. TensorFlow is an example of this kind of
automatic differentiation.

tape-based This approach tracks the actual composed functions as they are called during ex-
ecution of the forward pass. One name for this data structure is the Wengert list. With the
ordered sequence of computations in hand, it is then possible to walk backward through the list
to compute the gradient. The advantage of this is that it can more easily use all the features of
the host language and the imperative execution is easier to understand. The downside is that it
can be more difficult to optimize the code and reuse computations across executions. Autograd
(https://github.com/HIPS/autograd) is an example of this. The automatic differentiation in
PyTorch (https://pytorch.org/) also roughly follows this model.

Changelog
• TODO
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