
Precept 4: IPC & Process Mngmt.

COS 318: Fall 2018



Project 4 Schedule

● Precept: Monday 11/05, 7:30pm

○ (You are here)

● Design Review: Monday 11/12, 3 - 7pm

● Due: Sunday 11/18, 11:55pm



Project 4 Overview

● Goal: Add process management and 
inter-process communication to the kernel

● Read the project spec for details

● Starter code can be found on the lab 
machines (/u/318/code/project4)

● Start early



Project 4 Overview

1. Implement a spawn system call

2. Implement inter-process communication using 
message boxes

3. Implement a handler for the keyboard interrupt

4. Implement a kill system call

5. Implement a wait system call



Project 4 Implementation Checklist

1. do_spawn: creates a new process

2. do_mbox_*: mbox functions to enable IPC

- open, close, send, recv, is_full

3. Handle keyboard input: putchar, do_getchar

4. do_kill: kills a process

5. do_wait: waits on a process



System Calls



Spawn

● Kernel has a fixed array of PCBs

● What information do you need to initialize a process?
○ PID
○ New stacks (user/stack)
○ Entry point (ramdisk_find)
○ total_ready_priority (lottery scheduling)

● Scheduler uses lottery scheduling

● Make sure you keep the sum of the priorities updated



Kill

● A process should be killed immediately
● Which queue it’s in (ready, blocked, sleeping, etc.) doesn’t matter – 

kill it!
● Do not reclaim locks (this is extra credit)
● Reclaim memory:

○ PCB
○ Stacks
○ Look at robinhood test case to determine what else needs to be 

reclaimed
● Update total_ready_priority



Wait

● Waits for a process to terminate:
○ Blocks until the process is killed or exits normally

● What do you need to add to the PCB to 
implement this behavior?

● Return -1 on failure, 0 on success



Message Passing + Keyboard



Message Box - Overview

● Used for inter-process communication

○ Processes can both put and consume data from the 
message box

● It’s a bounded buffer problem!

○ send blocks if the message box is full

○ recv blocks if there are no messages



Message Box - Implementation

● Implemented as a circular buffer

○ Array, with head and tail pointers

● Receive messages in FIFO order

● Messages can have variable length

○ But, there is a fixed max length. See constants at 
bottom of common.h



Message Box - Suggestions

● Use locks and CVs as shown in class

○ Probably need two CVs: fullBuffer and 
emptyBuffer

● Multiple producers + consumers: protect 
against race conditions

● Review Lecture 10 and MOS 2.3.7-8

https://www.cs.princeton.edu/courses/archive/fall18/cos318/lectures/10.MessagePassing.pdf


Keyboard - How does it work?

● IRQ1 interrupt generated on key press or release

● Interrupt handler gets key scan code from hardware

● Specific key handler called, based on key type:

○ Modifier Key: change internal state

○ Other Keys: convert scan code to ASCII char + post to 
keyboard buffer 



Keyboard - Software Design

● kernel.c:init_idt sets keyboard handler to 
entry.S:irq1_entry

● irq1_entry saves context + calls 
keyboard.c:keyboard_interrupt

● keyboard_interrupt gets scan code from 
hardware + calls specific key handler...



Keyboard - Software Design

● Modifier keys get their own handlers

● normal_handler catches everything else:

○ Converts scan code to ASCII character

○ Calls putchar to add it to keyboard buffer

● Processes read from buffer with get_char



Keyboard - What you need to do

● Implement putchar and do_getchar

○ Use your message box API!

● Producer should not be blocked

○ If keyboard message box is full, discard the character

○ Use do_mbox_is_full to check beforehand

● What if IRQ1 occurs while a process is calling get_char?



Tips + Other Notes

● Synchronization is tricky: think carefully about when / 
how to use locks, CVs, and critical sections

● Look at util.h + other .h files for helpful functions

● May need to change other pieces of code - this is fine

○ Make sure you submit them!

● Only two test cases provided: write your own unit tests



Design Review

● Process Management:
○ How will your spawn, wait, and kill work?
○ How will you satisfy the requirement that if a process is killed 

while blocked on a lock, semaphore, condition variable or barrier, 
the other processes which interact with that synchronization 
primitive will be unaffected?

● Mailboxes:
○ What fields will the structs need?
○ Which synchronization primitives will you use?



Questions?


