
1

COS 318: Operating Systems

CPU Scheduling

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  CPU scheduling basics
u  CPU scheduling algorithms

CPU Scheduler

u  Selects from among the processes/threads that are
ready to execute (in ready state), and allocates the CPU
to one of them (puts in running state).

u  CPU scheduling can be non-preemptive or pre-emptive
u  Non-preemptive scheduling decisions may take place

when a process changes state:
1. switches from running to waiting state
2. switches from running to ready state
3. switches from waiting to ready
4. terminates

u  All other scheduling is preemptive
l  E.g. may be driven by an interrupt

4

Preemptive and Non-Preemptive Scheduling

Running

Blocked
Ready

Resource free,
I/O completion interrupt

(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

2

Scheduling Criteria
u  Assumptions made here

l  One process per user and one thread per process

l  Processes are independent

u  Scheduling Goals
l  Minmize response time (interactive) or turnaround time (batch)

•  Time from submission of job/operation to its completion
•  Job/operation could be keystroke in editor or running a big science simulation

l  Maximize throughput (operations/jobs per second)
•  Minimize overhead (e.g. context switching)
•  Use system resources efficiently (CPU, memory, disk, etc)

l  Fairness and proportionality
•  Share CPU in some equitable way, or that meets users’ expectations
•  Everyone makes some progress; no one starves

6

Some Problem Cases in Scheduling

u  Scheduler completely blind about job types
l  Little overlap between CPU and I/O

u  Optimization involves favoring jobs of type “A” over “B”
l  Lots of A’s? B’s starve

u  Interactive process gets trapped behind others
l  Response time bad for no good reason.

u  Priorities: A depends on B and A’s priority > B’s
l  B never runs, so A doesn’t continue

Scheduling Algorithms

u  Simplified view of scheduling:
l  Save process state (to PCB)
l  Pick which process to run next
l  Dispatch process

7

First-Come-First-Serve (FCFS) Policy

u  Schedule tasks in the order they arrive
l  Run them until completion or they block or they yield

u  Example 1
l  P1 = 24 sec, P2 = 3 sec, and P3 = 3 sec, submitted ‘same’ time in that order
l  Avg. response time = (24+27+30)/3 = 27. Avg. wait time (0+24+27)/3 = 17

u  Example 2
l  Same jobs but come in different order: P2, P3 and P1
l  Average response time = (3 + 6 + 30) / 3 = 13 sec, avg wait time: 3 sec

u FIFO pro: Simple. Con: Short jobs get stuck behind long ones

P1 P2 P3

P2 P3 P1

3

Shortest Job First (SJF) Scheduling

u Whenever scheduling decision is to be made, schedule
process with shortest remaining time to completion
l  Non-preemptive case: straightforward (if time can be estimated)
l  Preemptive case: if new process arrives with smaller remaining

time, preempt running process and schedule new one
u Simple example

l  P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec
l  All arrive at the same time

u Can you do better than SRTCF in terms of average
response time?

u  Issues with this approach?

P1 P2 P3 P4

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

u SJF (non-preemptive)

u Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of non-preemptive SJF

P1 P3 P2

73 160

P4

8 12

Example of preemptive SJF

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

u SJF (preemptive)

u Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Round Robin

u  Similar to FCFS, but with a time slice for timer interrupt
l  Time-interrupted process is moved to end of queue

u  FCFS for preemptive scheduling
u  Real systems also have I/O interrupts in the mix

u  How do you choose time slice?

Current
process

4

FCFS vs. Round Robin

u  Example
l  10 jobs and each takes 100 seconds

u  FCFS (non-preemptive scheduling)
l  job 1: 100s, job2: 200s, ... , job10: 1000s

u  Round Robin (preemptive scheduling)
l  time slice 1sec and no overhead
l  job1: 991s, job2: 992s, ... , job10: 1000s

u  Comparisons
l  Round robin is much worse (avg turnaround time) for jobs

about the same length
l  Both are fair, but RR is bad in the case where FIFO is optimal
l  But, e.g. for streaming video, RR is good, since everyone

makes progress and gets a share “all the time”

Resource Utilization Example

u  A, B, and C run forever (in this order)
l  A and B each uses 100% CPU forever
l  C is a CPU plus I/O job (1ms CPU + 10ms disk I/O)

u  Time slice 100ms
l  A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O),
…

u  Time slice 1ms
l  A (1ms CPU), B (1ms CPU), C (1ms CPU), A (1ms CPU), B

(1ms CPU), C(10ms I/O) || A, B, …, A, B

u  What do we learn from this example?

16

Virtual Round Robin

u  I/O bound processes go
to auxiliary queue
(instead of ready
queue) to get
scheduled

u  Aux queue is FIFO
u  Aux queue has

preference over ready
queue

CPU Admit

Timeout

Dispatch

I/O wait

I/O wait

I/O wait

Aux queue

I/O
 c

om
pl

et
io

n

17

Priority Scheduling

u Not all processes are equal, so rank them
u The method

l  Assign each process a priority
l  Run the process with highest priority in the ready queue first
l  Adjust priority dynamically (I/O wait raises the priority, reduce

priority as process runs)
u Why adjusting priorities dynamically

l  T1 at priority 4, T2 at priority 1 and T2 holds lock L
l  Scenario

•  T1 tries to acquire L, fails, blocks.
•  T3 enters system at priority 3.
•  T2 never gets to run, and T1 is never unblocked

5

Multi-level Feedback Queues (MFQ)

u  Round-robin queues, each with different priority
u  Higher priority queues have shorter time slices
u  Jobs start at highest priority queue
u  If timeout expires, drop one level
u  If timeout doesn’t expire, stay or pushup one level
u  What does this method do?

Priority
4
3
2
1

Time slices
1
2
4
8

Lottery Scheduling

u  Motivations
l  SJF does well with average response time, but is unfair (long

jobs can be starved)
l  Need a way to give everybody some chance of running

u  Lottery method
l  Give each job a number of tickets
l  Randomly pick a winning ticket
l  To approximate SJF, give short jobs more tickets
l  To avoid starvation, give each job at least one ticket
l  Cooperative processes can exchange tickets

20

Multiprocessor and Cluster

Multiprocessor architecture
u  Cache coherence
u  Single OS

Cluster or multicomputer
u  Distributed memory
u  An OS in each box

…
CPU

L1 $

L2 $

CPU

L1 $

L2 $

…

Memory Network

21

Multiprocessor/Cluster Scheduling

u Design issue
l  Process/thread to processor assignment

u Gang scheduling (co-scheduling)
l  Threads of the same process will run together
l  Processes of the same application run together

u Dedicated processor assignment
l  Threads will be running on specific processors to completion
l  Is this a good idea?

6

22

Real-Time Scheduling

u Two types of real-time
l  Hard deadline

•  Must meet, otherwise can cause fatal error
l  Soft Deadline

•  Meet most of the time, but not mandatory

u Admission control
l  Take a real-time process only if the system can guarantee the

“real-time” behavior of all processes.
l  Assume periodic processes. The jobs are schedulable, if the

following holds:

 where Ci = computation time, and Ti = period

∑ Ci
Ti

≤ 1

23

Rate Monotonic Scheduling (Liu & Layland 73)

u  Assumptions
l  Each periodic process must complete within its period
l  No process is dependent on any other process
l  A process needs same amount of CPU time on each burst
l  Non-periodic processes have no deadlines
l  Process preemption occurs instantaneously (no overhead)

u  Main ideas of RMS
l  Assign each process a fixed priority = frequency of occurrence
l  Run the process with highest priority

u  Example
l  P1 runs every 30ms gets priority 33 (33 times/sec)
l  P2 runs every 50ms gets priority 20 (20 times/sec)

24

Earliest Deadline Scheduling

u Assumptions
l  When a process needs CPU time, it announces its deadline
l  No need to be periodic process
l  CPU time needed may vary

u Main idea of EDS
l  Sort ready processes by their deadlines
l  Run the first process on the list (earliest deadline first)
l  When a new process is ready, it preempts the current one if its

deadline is closer

u Example
l  P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
l  P1 goes first
l  More in MOS 7.4.4

25

BSD 4.3 Scheduling with Multi-Queue

u  “1 sec” preemption
l  Preempt if a process doesn’t block or complete within 1 sec

u  Priority is recomputed every second
l  Pi = base + (CPUi-1) / 2 + nice, where CPUi = (Ui + CPUi-1) / 2
l  Base is the base priority of the process
l  Ui is process utilization in interval i

u  Priorities
l  Swapper
l  Block I/O device control
l  File operations
l  Character I/O device control
l  User processes

7

26

Linux Scheduling

u  Time-sharing scheduling
l  Each process has a priority and # of credits
l  Process with the most credits will run next
l  I/O event increases credits
l  A timer interrupt causes a process to lose a credit, until zero

credits reached at which time process is interrupted
l  If no process has credits, then the kernel issues credits to all

processes: credits = credits/2 + priority

u  Real-time scheduling
l  Soft real-time (really just higher priority threads: FIFO or RR)
l  Kernel cannot be preempted by user code

27

Windows Scheduling

u Classes and priorities
l  Real time: 16 static priorities
l  Variable: 16 variable priorities, start at a base priority

•  If a process has used up its quantum, lower its priority
•  If a process waits for an I/O event, raise its priority

u Priority-driven scheduler
l  For real-time class, do round robin within each priority
l  For variable class, do multiple queue

u Multiprocessor scheduling
l  For N processors, run N-1 highest priority threads on N-1

processors and run remaining threads on a single processor
l  A thread will wait for processors in its affinity set, if there are

other threads available (for variable priorities)

28

Summary

u  Best algorithms may depend on your primary goals
l  FIFO simple, optimal avg response time for tasks of equal size,

but can be poor avg reponse time if tasks vary a lot in size
l  SJF gives the minimal average response time, but can be not

great in variance of response times
l  RR has very poor avg response time for equal size tasks, but is

close to SJF for variable size tasks
l  Small time slice is important for improving I/O utilization
l  If tasks have mix of processing and I/O, do well under SJF but

can do poorly under RR
l  Priority and its variations are used in most systems
l  Lottery scheduling is flexible
l  Multi-queue can achieve a good balance
l  Admission control is important in real-time scheduling

