
1

COS 318: Operating Systems

Implementing Threads

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  Thread implementation
l  Non-preemptive versus preemptive threads

l  Kernel vs. user threads

3

Kernel scheduler

Revisit Monolithic OS Structure

u  Kernel consists of
l  Boot loader
l  BIOS
l  Key drivers
l  Threads
l  Scheduler
l  …

u  Scheduler
l  Use a ready queue to hold all

ready threads
l  Schedule in a thread in the

same address space (thread
context switch)

l  Schedule in a thread with a
different address space
(process context switch)

User
Process

User
Process

Thread context switch

u  Scheduler schedules threads on context switch
u  Voluntary

l  Thread yields or blocks, e.g. for a resource like disk, a
synchronization variable etc

l  Thread_join (wait for a target process, e.g. child, to terminate)
u  Involuntary

l  Interrupt or exception
l  Some other thread of higher priority needs to run

2

5

Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

6

Non-Preemptive Scheduling (contd.)

u  A non-preemptive scheduler invoked by thread calling a
yield, block, join or similar

u  Simplest form of scheduler: When invoked:
 save current process/thread state

 choose next process/thread to run
 dispatch (load PCB/TCB and jump to it)

u  Scheduler can be viewed as just another kernel thread

Thread Context

u  Can be classified into two types:
l  Private
l  Shared

u  Shared state
l  Contents of memory (global variables, heap)
l  File system

u  Private state
l  Program counter
l  Registers
l  Stack

8

Where and How to Save Thread Context?

u  Save the context on the thread’s stack
l  Many processors have a special instruction to do it efficiently
l  But, need to deal with the overflow problem

u  Check before saving
l  Make sure that the stack has no overflow problem
l  Copy it to the TCB residing in the kernel heap
l  Not so efficient, but no overflow problems

frame
frame

frame
frame

frame
frame

frame
frame Thread 2

Thread 1

Save the context
of Thread 1 to
its stack Context

3

10

Thread Control Block (TCB)

l  Current state
•  Ready: ready to run
•  Running: currently running
•  Blocked: waiting for resources

l  Registers
l  Status (EFLAGS)
l  Program counter (EIP)
l  Stack

Voluntary thread context switch

u  Save registers on old stack
u  Switch to new stack, new thread
u  Restore registers from new stack
u  Return
u  Exactly the same with kernel threads or user threads

 // We enter as oldThread, but we return as newThread.
// Returns with newThread's registers and stack.

void thread_switch(oldThreadTCB, newThreadTCB) {
 pushad; // Push general register values onto the old stack.
 oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
 %esp = newThreadTCB->sp; // Switch to the new stack.
 popad; // Pop register values from the new stack.
 return;
}

12

Preemption

u  Why?
l  Timer interrupt for

CPU management
l  Asynchronous I/O completion

u  When is CPU interrupted?
l  Between instructions
l  Within an instruction,

except atomic ones
u  Manipulate interrupts

l  Disable (mask) interrupts
l  Enable interrupts
l  Non-Maskable Interrupts

CPU

Memory Interrupt

13

Recall: Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

Yield
(call scheduler)

4

14

State Transitions for Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available, I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

15

Interrupt Handling for Preemptive Scheduling

u  Timer interrupt handler:
l  Save the current process / thread to its PCB / TCB
l  Call scheduler

u  I/O interrupt handler:
l  Save the current process / thread to its PCB / TCB
l  Do the I/O job
l  Call scheduler

u  Issues
l  Disable/enable interrupts
l  Make sure that it works on multiprocessors

User- and Kernel-level Threads

17

Kernel scheduler

User
Process

User
Process

u  Threads at user level (in user space, user mode) and at
kernel level

u  User level threads map to kernel level threads, which are all
the operating system really knows about 18

User-level Threads

u  Managed by user-level runtime
software, run in user mode

u  Kernel knows only about user
processes, not user threads

u  Invoking thread API leads to user-
level function call

u  Context switch at user-level
u  Preemption?

u  Fast (could be as fast as function call)
u  Can have custom user-level schedulers
u  Lower kernel complexity
u  Can implement on kernels that are

single-threaded

u  Extreme case: kernel
is single-threaded

5

19

Kernel Threads

u  Managed by OS, run in kernel mode
u  Invoking thread API causes system

call
u  Context switch invokes OS
u  PCB per process and TCB per thread

in kernel

u  Kernel has knowledge of threads so
can optimize better
l  E.g. give more CPU time to processes with

more threads

u  When one thread in a process blocks,
others can still run
l  Good for cases where threads block

frequently

u  Extreme case: one
kernel thread per user
thread, so no need to
for user thread mgmt

20

Disadvantages of User and Kernel Threads

u  User threads
l  When a user-level thread is blocked on an I/O event, the whole

process is blocked
•  Precisely the case for which threads are often useful …

l  Kernel may not be able to schedule processes optimally
•  May schedule process with idle threads
•  May not give more CPU to processes with many threads
•  May need OS modifications or other mechanisms to solve

l  Multiprocessor or multi-core systems need at least one kernel
thread per processor/core, so hard to do only user-level

u  Kernel threads
l  Thread context switches and thread operations more

expensive (cross OS boundary)
l  More complexity in kernel

21

Implementation Models for User-level Threads

u  User threads are mapped to kernel threads
l  Can think of them as a kernel thread per “virtual processor”
l  (hence need at least one kernel-level thread per core)

u  Simplest case, discussed so far, is many to 1
l  Only one user-level thread runs at a time, since only one kernel

thread
l  Case of kernel level threads so far can be viewed as 1:1

u  Other models exist
l  m user threads mapped to n kernel threads
l  certain user level threads bound to a subset of kernel threads
l  Dynamically change-able no. of kernel threads for user process

(but needs more communication mechanisms up/down), etc.

22

Summary of User vs. Kernel Threads

u  Kernel-threads
l  Kernel-level threads are scheduled by a kernel scheduler
l  A context switch of kernel-threads is more expensive than user

threads due to crossing protection boundaries
l  Pure user-level threads hard to make work on multiprocessor:

need multiple kernel-level threads (virtual processors)
u  Hybrid models exist, but are complicated

l  E.g. using kernel level threads can be 1-1 for user-to-kernel
level thread mapping, using user-level threads is many-to-1,
and there are many-to-many alternatives as well

6

23

Interactions between User and Kernel Threads

u  Every thread has its own user stack. What about kernel
stack? Two possibilities:
l  Every user thread has its own kernel stack
l  All threads of a process share the same kernel stack

Private kernel stack Shared kernel stack

Memory usage More Less

System services Concurrent access Serial access

Multiprocessor Yes Not within a process

Complexity More Less

24

Summary

u  Non-preemptive threads issues
l  Scheduler
l  Where to save contexts

u  Preemptive threads
l  Interrupts can happen any where!

u  Kernel vs. user threads

