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Revisit Monolithic OS Structure

¢+ Kernel consists of
e Boot loader
e BIOS
e Key drivers User User
e Threads Process Process
e Scheduler éé é éé é
e .

¢ Scheduler
e Use a ready queue to hold all S S S éé é S S S
ready threads

e Schedule in a thread in the

same address space (thread Kernel scheduler

context switch)

e Schedule in a thread with a
different address space
(process context switch)
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Today’ s Topics
o0
¢ Thread implementation
o Non-preemptive versus preemptive threads
e Kernel vs. user threads
2
Thread context switch
o

¢ Scheduler schedules threads on context switch

¢ Voluntary

e Thread yields or blocks, e.g. for a resource like disk, a
synchronization variable etc

e Thread_join (wait for a target process, e.g. child, to terminate)
¢ Involuntary

e Interrupt or exception

e Some other thread of higher priority needs to run




Non-Preemptive Scheduling
o0
Terminate
(call scheduler)
Scheduler
dispatch Block for resource
Yield (call scheduler)
Create
Blocked
Resource becomes available
(move to ready queue)
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Thread Context
o0

+ Can be classified into two types:
e Private
e Shared

# Shared state
e Contents of memory (global variables, heap)
o File system

+ Private state
e Program counter
o Registers
e Stack
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Non-Preemptive Scheduling (contd.)

o0

+ A non-preemptive scheduler invoked by thread calling a
yield, block, join or similar

¢ Simplest form of scheduler: When invoked:

save current process/thread state
choose next process/thread to run

dispatch (load PCB/TCB and jump to it)

+ Scheduler can be viewed as just another kernel thread

Where and How to Save Thread Context?
o0
+ Save the context on the thread’s stack
e Many processors have a special instruction to do it efficiently
e But, need to deal with the overflow problem

Thread 2 { frame Save the context

| frame | of Thread 1 to
Thread 1 its stack
frame
frame

¢ Check before saving
o Make sure that the stack has no overflow problem
e Copy it to the TCB residing in the kernel heap
e Not so efficient, but no overflow problems
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Thread Control Block (TCB)

e Current state
» Ready: ready to run
* Running: currently running
« Blocked: waiting for resources
e Registers
e Status (EFLAGS)
e Program counter (EIP)
e Stack

Preemption

+ Why?
e Timer interrupt for
CPU management
e Asynchronous I/0O completion

¢ When is CPU interrupted?

e Between instructions

Memory|

e Within an instruction,
except atomic ones

CPU

Interrupt

¢ Manipulate interrupts ‘
e Disable (mask) interrupts

o Non-Maskable Interrupts

=
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e Enable interrupts S \6)

Voluntary thread context switch

+ Save registers on old stack

+ Switch to new stack, new thread

+ Restore registers from new stack

¢ Return

¢ Exactly the same with kernel threads or user threads

/I We enter as oldThread, but we return as newThread.
/I Returns with newThread's registers and stack.

void thread_switch(oldThreadTCB, newThreadTCB) {
pushad; /I Push general register values onto the old stack.
oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
%esp = newThreadTCB->sp; // Switch to the new stack.
popad; /I Pop register values from the new stack.
return;

Terminate
(call scheduler)

Scheduler

dispatc
PZ Block for resource

(call scheduler)

Yield

Create (call scheduler)

Resource becomes available
(move to ready queue)




State Transitions for Preemptive Scheduling
o0

Terminate
(call scheduler)

Scheduler

dispatc
5 Block for resource

(call scheduler)

Yield, Interrupt
(call scheduler)

Create

Resource becomes available, I/0 completion interrupt
(move to ready queue)

User- and Kernel-level Threads

User User
Process Process

56 6 56 6
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Kernel scheduler

¢ Threads at user level (in user space, user mode) and at
kernel level
+ User level threads map to kernel level threads, which are all
@®@ the operating system really knows about 17

Interrupt Handling for Preemptive Scheduling
o0
¢ Timer interrupt handler:
e Save the current process / thread to its PCB / TCB
e Call scheduler
¢ /O interrupt handler:
e Save the current process / thread to its PCB / TCB
e Do the I/O job
e Call scheduler
+ Issues
e Disable/enable interrupts
o Make sure that it works on multiprocessors
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User-level Threads
o0

Process Thread

¢ Managed by user-level runtime

software, run in user mode \\
+ Kernel knows only about user User é é é é
processes, not user threads space
¢ Invoking thread API leads to user- -
—
X

level function call Kermal
. Ke |
+ Context switch at user-level s"“e{ / e'"e‘
. /
* Preemptlon? Run-time Thread Process

system table table
¢ Fast (could be as fast as function call)
+ Can have custom user-level schedulers 4 Extreme case: kernel
+ Lower kernel complexity is single-threaded
*

Can implement on kernels that are
single-threaded




Kernel Threads Disadvantages of User and Kernel Threads

o0 o0
+ Managed by OS, run in kernel mode Process  Thread + User threads
+ Invoking thread API causes system \ / e When a user-level thread is blocked on an 1/O event, the whole
call 3 process is blocked

o Context switch invokes OS  Precisely the case for which threads are often useful ...

+ PCB per process and TCB per thread e Kernel may not be able to schedule processes optimally
in kernel » May schedule process with idle threads

» May not give more CPU to processes with many threads

+ Kernel has knowledge of threads so Kornel ‘,El % + May need OS modifications or other mechanisms to solve
can optimize better prockes Tm'ea ; e Multiprocessor or multi-core systems need at least one kernel
e E.g. give more CPU time to processes with table table thread per processor/core, so hard to do only user-level

more threads

. ¢ Kernel threads
& When one thread in a process blocks, ¢ Extreme case: one , )
others can still run kernel thread per user e Thread context switches and thread operations more

e Good for cases where threads block thread, so no need to expensive (cross OS boundary)

frequently for user thread mgmt o More complexity in kernel
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Implementation Models for User-level Threads Summary of User vs. Kernel Threads
O | o

¢ User threads are mapped to kernel threads ¢ Kernel-threads

e Can think of them as a kernel thread per “virtual processor” o Kernel-level threads are scheduled by a kernel scheduler

e (hence need at least one kernel-level thread per core) e A context switch of kernel-threads is more expensive than user
+ Simplest case, discussed so far, is many to 1 threads due to crossing protection boundaries

o Only one user-level thread runs at a time, since only one kernel * Pure userTIeveI threads hard to makelz work on multiprocessor:

thread need multiple kernel-level threads (virtual processors)

e Case of kernel level threads so far can be viewed as 1:1 ¢ Hybrid models exist, but are complicated

+ Other models exist e E.g. using kernel level threads can be 1-1 for user-to-kernel

level thread mapping, using user-level threads is many-to-1,

e m user threads mapped to n kemel threads and there are many-to-many alternatives as well

e certain user level threads bound to a subset of kernel threads

e Dynamically change-able no. of kernel threads for user process
(but needs more communication mechanisms up/down), etc.
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Interactions between User and Kernel Threads

+ Every thread has its own user stack. What about kernel
stack? Two possibilities:

e Every user thread has its own kernel stack
e All threads of a process share the same kernel stack

Private kernel stack

Shared kernel stack

Memory usage

More

Less

System services

Concurrent access

Serial access

Multiprocessor

Yes

Not within a process

Complexity

More

Less
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Summary

¢ Non-preemptive threads issues
e Scheduler
o Where to save contexts
+ Preemptive threads
e Interrupts can happen any where!
+ Kernel vs. user threads
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