COS 318: Operating Systems
o0
Processes and Threads

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Today’ s Topics

+ Concurrency
¢ Processes
¢ Threads

ok

Next Few Lectures

+ Processing: Concurrency and Sharing
e Processes and threads
e Synchronization
e CPU scheduling
e Deadlock

Concurrency, Processes and Threads
o0

¢ Concurrency
e Many things going on in an operating system
« Application process execution, interrupts, background tasks, maintenance
e CPU is shared, as are I/O devices

e Human beings are not very good at keep track of this and programming it
monolithically
e Processes (and threads) are abstractions to bridge this gap

¢ Concurrency via Processes
e Decompose complex problems into simple ones
e Make each simple one a process
e Processes run ‘concurrently’ but each process feels like it has its own CPU

+ Example: gcc (via “gcc —pipe —v”) launches the following
e /usr/libexec/cpp | /usr/libexec/cc1 | lusr/libexec/as | /usr/libexec/elf/ld

@ e Each instance of cpp, cc1, as and Id running is a process
Q 1<l

Process Process vs. Program
o0 o0
+ An instance of a program in execution ¢ Process > program
e Program code, execution context, one or more threads e Program is just the code; just part of process state
Smain () N main () . o Example: many users can run the same program
{ { Address
P P space
| oo () | oo () ¢ Process < program
bl b Resources e A program can invoke more than one process
} . (file p)trs, e Example: Fork off processes
! ! etc .
| bar () bar() | e Many processes can be running the same program
Py Pl Registers |
; PC
) P
N Program Process
g Threads %
of execution
5
Simplest Process Threads
O | o

+ Sequential execution ¢ A process has an address space and resources

e One thread per process ¢ Thread: a locus of execution

e No concurrency inside a process o A sequential execution stream within a process (sometimes
e Everything happens sequentially called lightweight process)

e Some coordination may be required e Separately schedulable: OS/runtime can run/suspend

e A process can have one or more threads

¢ Process state e Threads in a process share the same address space
e Registers

e Main memory
e |/O devices
* File system
« Communication ports

.. | @ g gg orocecs %g %

+ Can have concurrency across processes, and/or across
threads within a process

o We will initially assume one thread per process

Process Concurrency

+ Virtualization CPU

CPU

o Processes interleaved on CPU ~ P1:
CPU

+ 1/O concurrency

e P1 doing I/O overlapped with
P2 running on CPU

CPU IIO CPU

¢ Parallel programs
e To achieve better performance

¢ Servers (expressing logically concurrent tasks)
e Multiple connections handled simultaneously

¢ Programs with user interfaces
e To achieve user responsiveness while doing computation

¢ Network and disk bound programs
e To hide network/disk latency

b
5]

e Each runs almost as fast as if it P1: 3s T Ds 3s
has its own computer
. . CPU liO

o Reduce total completion time P2: 5
¢ CPU parallelism

e Multiple CPUs (such as SMP) cPU1

e Processes running in parallel I

e Speedup CPU2

P2: 35"
® :
Concurrency in Computing
o0

Parallelism

¢ Parallelism is common in real life

e A single sales person sells $1M annually

e Hire 100 sales people to generate $100M revenue
¢ Speedup

e Ideal speedup is factor of N

e Reality: bottlenecks + coordination overhead reduce speedup
+ Questions

e Can you speed up by working with a partner?

e Can you speed up by working with 20 partners?

e Can you get super-linear (more than a factor of N) speedup?

The Processing lllusion

+ Every process thinks it owns the CPU

e Yet on a uniprocessor all processes share
the same physical CPU

e How does this work?
e Processes are interleaved on the CPU

¢ Two key pieces:

e PCB --- process control block, one per
process, holds execution state

. . while(1)

e dispatching loop: interrupt
save state
get next process
load state, jump to it

3

X + 5y;

Programmer vs. Processor View

o0
Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X =x+1; X =x+1; X =x + 1 X =x+1;
y =y +x y =y +Ex; y =y +x;
z = x + 5y, z = Thread is suspended. +veiiiiiiiiiins

Other thread(s) run.
Thread is resumed.

Thread is suspended.
Other thread(s) run.
Thread is resumed.

One Execution (1 core)

Thread1 []
Thread 2 1
Thread 3]

Another Execution (1 core)

Thread 1 [_| 1]
Thread 2 l:| D D l:|
Thread 3 0 o 1

ok

The Abstraction
o0
+ Every process (thread) runs on a dedicated virtual
processor, with unpredictable/variable speed
e Programs must work with any schedule
Programmer Abstraction Physical Reality
Threads | § £ G 1S ISISH)ISISIS S S
Processors§1§2§3§4§5§ 12
Threads Threads
Possible executions
O |

Another Execution (3 cores)

Thread1 []
Thread2 []
Thread3 []

Managing Execution: Process Control Block
o
PCB holds state and resource information associated with a process
¢ Process management info
e |dentification
e State
Ready: ready to run.
Running: currently running.
Blocked: waiting for resources
o Registers, EFLAGS, EIP, and other CPU state
e Stack, code and data segment
e Parents, etc
¢ Memory management info
e Segments, page table, stats, etc
+ 1/O and file management
e Communication ports, directories, file descriptors, etc.

+ Resource allocation and accounting information

B2
&

Process Control Block

Process management Memory management File management
Registers Pointer to text segment Root directory
Program counter Pointer to data segment Working directory
Program status word Pointer to stack segment | File descriptors

Stack pointer User ID
Process state Group ID
Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Possible fields of a PCB

API for Process Management

+ Creation and termination
e Exec, Fork, Wait, Kill
+ Signals
e Default action, Handler, Ways to send
¢ Operations
e Block, Yield
¢ Synchronization
o We will talk about this a lot more later

20

Create A Process

+ Creation
e Load code and data into memory
e Create an empty call stack
e Initialize state
o Make the process ready to run

+ Cloning a process
e Save state of current process
e Make copy of current code, data, stack and OS state
o Make the process ready to run

b
]

21

Unix Example

¢ Methods to create and run processes:
e fork clones a process
e exec overlays the current process

pid = fork();
if (pid == 0)

/* child process */

exec (“foo”); /* does not return */
Else

/* parent */

wait (pid) ; /* wait for child to die */

22

+ Save a context (everything that a process may damage)
e All registers (general purpose and floating point)
e All co-processor state
e Save all memory to disk?
e What about cache and TLB?

¢ Start a context
e Does the reverse

¢ Challenge
o OS code must save state without changing any state

e E.g. how should OS run without touching any registers?

« CISC machines have a special instruction to save and restore all
registers on stack

« RISC: reserve registers for kernel or have way to carefully save
one and then continue

m@w 26
e

Fork and Exec in Unix
o0
foo:
pid = fork(); Main ()
if (pid == 0) (
exec (“foo”); —
/////”~—§else }
pid = fork(); wait (pid);
if (pid == 0)
exec (“foo”) ;
else
wailt (pid); pid = fork();
\if (pid == 0)
exec (“foo”); > Wait
else
wait(pid) ;
23
Process Context Switch
o0

More on Fork

¢ Create and initialize PCB

¢ Create an address space

¢ Copy the content of the
parent address space to
the new address space

¢ Child inherits the
execution context of the
parent (e.g. open files)

¢ Inform scheduler that new
process is ready

Running: executing now
Ready: waiting for CPU
Blocked: waiting for 1/0 or lock

K

Process State Transition

Non-preemptive case: e.g. no timer interrupts

Create

)

Resource becomes
available

o0
New Parent
address [< address
space space
= [res
24
o0

Terminate

Blocked

27

Threads
o060
¢ Thread

e A sequential execution stream within a process (also called
lightweight process)

e Separately schedulable: OS or runtime can run or suspend at
any time

e A process may have one or more threads (loci of execution)

e Threads in a process share the same address space

¢ Thread concurrency

e Easier to program overlapping 1/0 and CPU with threads than
with signals

e A server (e.g. file server) serves requests with different threads
e Multiple CPUs sharing the same memory

28

Threads (cont’d)

Thread 2

Thread 1
X

SRR
HEH

Thread 3
/

|~ Process

Thread 1's — t— Thread 3's stack

stack

Kernel

Every thread has its own stack

Q®§\
e

Thread Usage Example

Kernel

Keyboard Disk
A word processor with three threads
Thread data structures
o060

Shared Thread 1’s
State Per-Thread State

Thread 2’s

Per-Thread State

Thread Control

Code Block (TCB)
Stack
Information
Saved
Registers
Global | e
Variables Thread

Metadata

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Heap

ok

Thread Control Block (TCB)

e State
» Ready: ready to run
* Running: currently running
« Blocked: waiting for resources

e Registers

e Status (EFLAGS)

e Program counter (EIP)
e Stack

e Code

32

Typical Thread API

+ Creation
e Fork, Join
¢ Mutual exclusion
e Acquire (lock), Release (unlock)
+ Condition variables
e Wait, Signal, Broadcast
o Alert
e Alert, AlertWait, TestAlert

ok

34

Threads (cont'd)

Per process items

Address space Program counter

Global variables Registers
Open files Stack
Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Per thread items

+ Per process: Items shared by all threads in a process
¢ Per thread: Items private to each thread

Revisit Process

+ Process
e Threads (simplest process has only one thread)
o Address space

e Environment for the threads to run on OS (resources in use
like open files, etc)

S 33 s 933

35

Threads and Processes Thread Context Switch
o o
Pracess 1 Pr°°elss1 Pr°°Tss1 Prﬁess + Save a context (everything that a thread may damage)
l o All registers (general purpose and floating point)

e All co-processor state

\
User o Need to save stack?
space

e What about cache and TLB?

Thread Thread ¢ Start a context
Kernel o Does the reverse
space Kernel Kernel))
¢ May trigger a process context switch

(a) (b)
(a) Three processes each with one thread
(b) One process with three threads

¢ Process = thread + address space + OS env (openfies, etc)
¢ Thread encapsulates concurrency; address space encapsulates

protection
£ 37

Procedure Call Threads vs. Procedures
o0 o0
+ Caller or callee save some context (same stack) + Threads may resume out of order
¢ Caller saved example: e Cannot use LIFO stack to save state
e Each thread has its own stack
save active caller registers o Threads switch less often
call foo e « "
e Each thread “has” its own CPU
foo() {
do stuff + Threads can be asynchronous
} e Procedure call can use compiler to save state synchronously

e Threads can run asynchronously

¢ Multiple threads
e Multiple threads can run on multiple CPUs in parallel
e Procedure calls are sequential

restore caller regs

39

3

m@w 38
5]

Process vs. Threads

¢ Address space
e Processes do not usually share memory (address space)

e Process context switch switches page table and other memory
mechanisms

e Threads in a process share the entire address space
¢ Privileges

e Processes have their own privileges (e.g. file access)

e Threads in a process share all privileges

40

Summary

+ Concurrency
e CPUand I/O
e Among applications
e Within an application
¢ Processes
e Abstraction for application concurrency
¢ Threads
e Abstraction for concurrency within an application

42

Real Operating Systems

¢ One or many address spaces
+ One or many threads per address space

1 address space

Many address spaces

1 thread per
address space

MSDOS
Macintosh

Traditional Unix

Many threads per
address space

Embedded OS,
Pilot

VMS, Mach (OS-X), 0S/2,
Windows NT/XP/Vista/7,
Solaris, HP-UX, Linux

41

ok

10

