COS 318: Operating Systems
o0

Protection and Virtual Memory

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Some Protection Goals

o
+ CPU

e Kernel has the ability to take CPU away from users to
prevent a user from using the CPU forever

e Users should not have such an ability
¢ Memory
e Prevent a user from accessing others’ data

e Prevent users from modifying kernel code and data
structures

+ /0
e Prevent users from performing “illegal” 1/Os

+ Question
e What’ s the difference between protection and security?

o 3
e

Outline

+ Protection Mechanisms and OS Structures

¢ Virtual Memory: Protection and Address Translation

Architecture Support for Processing/CPU
Protection

* Privileged Mode

An interrupt or exception (INT)

l

Kernel (privileged) mode
* Regular instructions

* Privileged instructions

* Access user memory

* Access kernel memory

! |

A special instruction (IRET)

User mode
* Regular instructions
* Access user memory

@

Privileged Instruction Examples

¢ Memory address mapping

Flush or invalidate data cache

¢ Invalidate TLB entries

¢ Load and read system registers

+ Change processor modes from kernel to user

+ Change the voltage and frequency of processor
+ Halt a processor

+ Reset a processor

¢ Perform I/O operations

Layered Structure

+ Hiding information at each layer
Layered dependency
¢ Examples ‘ Level N ‘
e THE (6 layers)
» Mostly for functionality splitting
e MS-DOS (4 layers) ’

L 2

¢ Pros
e Layered abstraction ’
« Separation of concerns, elegance

S v
e Inefficiency Hardware

e Inflexible

Level 2 ‘

Level 1 ‘

Monolithic

¢ All kernel routines are together,
linked in single large executable
e Each can call any other
e Services and utilities User User

+ Provides a system call AP program program
¢ Examples: N
e Linux, BSD Unix, Windows, ... Y5 A
Y B
¢ Pros
I V ——
e Shared kernel space
e Good performance Kernel
¢ Cons (many things)
e Instability: crash in any procedure

brings system down
e Unweildy / difficult to maintain,

@ extend .
A0

Possible Implementation: x86 Protection

Rings s 06

Privileged instructions
can be executed only
when current privileged
level (CPR) is 0

Operating syste:
services

e

Applications

ok

Microkernel Structure Virtual Machine
o o0e o006
+ Services implemented as regular o Virtual machine monitor
processes Virtualize hardware
¢ Micro-kernel obtains services for ° ! Apps Apps
users by messaging with services User (O ¢ Run several OSes
+ Examples: program Services e Examples 0s, 0S;
e Mach, Taos, L4, OS-X * IBM VM/370 VM, VM,
+ Pros? %o « Java VM
o Flexibility v * VMWare, Xen
e Fault isolation P E— éj/
¢ Cons? cermel + What would you use
o Inefficient (boundary crossings) SIS virtual machine for? Raw Hardware
e Inconvenient to share data
between kernel and services
% e Just shifts the problem, to level
with less protection, testing? 9 9 10
Memory Protection The Big Picture
00 o000
+ Kernel vs. user mode, plus + DRAM is fast, but relatively expensive
¢ Virtual address spaces and Address Translation ¢ Disk is inexpensive, but slow
e 100X less expensive CPU
Physical memory Abstraction: virtual memory e 100,000X longer latency
No protection Every program isolated from all e 1000X less bandwidth ‘
others and from the OS Memo
Limited size lllusion of “infinite” memory ¢ Our goals v
Sharing visible to programs Transparent --- can't tell if e Run programs as efﬂC'ently as pOSS|ble
physical memory is shared e Make the system as safe as possible
Virtual addresses are translated to physical addresses
7 ROy 13

Issues

¢ Many processes
e The more processes a system can handle, the better

¢ Address space size
e Many processes whose total size may exceed memory
e Even one process may exceed physical memory size

+ Protection
e A user process should not crash the system

e A user process should not do bad things to other
processes

w machine?
) 5 15

o

Consider A Simple System

o000
+ Only physical memory
e Applications use
physical memory directly x9000
¢ Run three processes
e Email, browser, gcc x7000
¢ What if
browser %5000
e gcc has an address
error? gcc x2500
e browser writes at x70507?
Free
e email needs to expand? x0000

e browser needs more
memory than is on the

Handling Protection

¢ Errors in one process should not affect others

¢ For each process, check each load and store
instruction to allow only legal memory references

gcc
address
CPU Check

)
o

Handling Finiteness: Relocation
o060

+ A process should be able to run regardless of where
its data are physically placed or physical memory size

+ Give each process a large, static “fake” address
space that is large and contiguous and entirely its own

+ As a process runs, relocate or map each load and
store to addresses in actual physical memory

email dd
address

CPU Check &

relocate

Virtual Memory
o080
¢ Flexible
e Processes (and data) can move in memory as they
execute, and can be part in memory and part on disk
¢ Simple
e Applications generate loads and stores to addresses in
the contiguous, large, “fake” address space
+ Efficient
e 20/80 rule: 20% of memory gets 80% of references
e Keep the 20% in physical memory (a form of caching)

Generic Address Translation

¢ Memory Management Unit
(MMU) translates virtual
address into physical address CPU
for each load and store

¢ Combination of hardware and Virtual address
(privileged) software controls
the translation MMU

¢ CPU view
e Virtual addresses

e Each process has its own
memory space [0, high] —
virtual address space

¢ Memory or I/O device view
e Physical addresses

Physical address

1/0

device

20

Address Mapping and Granularity
o000

+ Must have some “mapping” mechanism

e Map virtual addresses to physical addresses in RAM or

disk

¢ Mapping must have some granularity

e Finer granularity provides more flexibility

e Finer granularity requires more mapping information

)

Goals of Translation

o000
+ Implicit translation for each
memory reference

¢ A hit should be very fast
+ Trigger an exception on a miss 2-4x
+ Protected from user’s errors

10-20x

100-500x

Paging P
—
) 20M-30Mx

21

Address Translation Methods

¢ Base and Bounds

¢ Segmentation

¢ Paging

+ Multilevel translation
¢ Inverted page tables

Base and Bound (or Limit) Example: Cray-I
o0

+ Protection
e A process can only access physical
memory in [base, base+bound]
+ On a context switch
e Save/restore base, bound regs
+ Pros
e Simple
e Inexpensive (Hardware cost: 2
registers, adder, comparator)
+ Cons
e Can'tfit all processes in memory, have
to swap physical address
e Fragmentation in memory
e Relocate processes when they grow
e Compare and add on every instruction

virtual address

crror

ok

24

Base and Bounds
O |
virtual memory physical memory
0
code 6250 (base)
data
bound
stack 62p0+bound
Each program loaded into contiguous
regions of physical memory.
Example on next slide
Segmentation
O
¢ Every process has table of
(segq, size) for its segments Virtual address
¢ Treats (seg, size) as a finer-
. t ffset
grained (base, bound) Seermen error
+ Protection wer | size /
e Every entry contains rights R =

¢ On a context switch .
e Save/restore table in kernel mem |

¢ Pros
e Provides logical protection:

programmer knows program 4@7
and so segments

e Therefore efficient

e Easy to share data physical address

¢ Cons

@ e Complex management
e Fragmentation

25

. . y
Segmentation Example Segmentation Example (Cont’d)
o0
(assume 2 bit segment ID, 12 bit segment offset)
v-segment# p-segment segment physical memory Virtual memory for strlen (x) physical memory for strlen (x)
start size
code (00) 0x4000 0x700 Main: 240 store 1108, r2 x: 108 abc\0
data (01) 0 0x500 0 244 store pc+8, r31
- (10) 0 0 af 248 jump 360
stack (11) 0x2000 0x1000 24¢ Main: 4240 store 1108, r2
virtual memory 4244 store pc+8, r31
2000 strlen: 360 loadbyte (r2), r3 4248 jump 360
0 424c
6ff 420 jump (r31)
2fff .
1000 strlen: 4360 loadbyte (r2), r3
14fF
4000 x: 1108 abc\0 4420 jump (r31)
3000 5t
3fff
Paging Paging example
O |
+ Use a fixed size unit called
page instead of segment Virtual address page table size virtual memory physical memory
¢ Use page table to translate VPage # | offset |— Z
Various bits in each entr eror 2 !
¢ ’ y &/ b i
+ Context switch Page table c 2 k
e Similar to segmentation PPage# | ... d 3 8 !
-)
+ What should page size be? \ e 1 12 .
¢ Pros : f f
o Simple allocation PPagl# | ﬁ g
e Easy to share 16 b
N o a
+ Cons i page size: 4 bytes)
o Big table) c
e PTEs even for big holes in Physical address k d
memory |
* Q\"@:ﬁ@

How Many PTEs Do We Need?

¢ Assume 4KB page

e Needs “low order” 12 bits to address byte within page
+ Worst case for 32-bit address machine
e # of processes x 220
e 220 PTEs per page table (~4Mbytes), but there might be
10K processes. They won'’ t fit in memory together
+ What about 64-bit address machine?
e # of processes x 252

e A page table cannot fit in a disk (252 PTEs = 16PBytes)!

30

Multiple-Level Page Tables

Virtual address
| dir |table] offset | pte

Directory

What does this buy us?

{\@m
e

32

logical address | selector

Segmentation with paging
o0
Virtual address
‘ Vseg # H VPage # H offset }7
Page table
seg | size +— | ppage#
/' L \\
l PPagki |
Every segment has
its own page table. (T) offset
error Physical address
Intel 30386 address translation
o

| offset

linear address

page directory

dreciory | _page [ofieet] _pasotrame

page table

Segmentation with paging.

descrip«or«lable
with a two-level paging
sogment descriptor _.(scheme.

physical address

@ page directory’ T

base eg ister

directory entry —‘ L—»| page table entry

Inverted Page Tables

¢ Main idea
e One PTE for each Virtual
physical page frame address

Physical
address

e Hash (Vpage, pid) to

‘ pid ‘Vpage‘offset‘ ‘ k ‘offset‘

Ppage#

¢ Pros

e Small page table for
large address space

+ Cons
e Lookup is difficult

e Overhead of managing
hash chains, etc

Inverted page table

34

TLB and Page Table Translation

Virtual Virtual
Address Address
Processor T TLB [Migs -wovseeeesees | Page |lInvalid e

Exception

,!\ Physical
Memory

Physical
Address

Data

Data

ok

Virtual-To-Physical Lookups
o0
¢ Programs only know virtual addresses

e Each program or process starts from 0 to high address
+ Each virtual address must be translated
e May involve walking through a hierarchical page table

e Since the page table is in memory, a program memory
access may requires several actual memory accesses

+ Solution

e Cache recent virtual to physical translations, i.e.
“active” part of page table, in a very fast memory

e [f virtual address hits in TLB, use cached translation
e Typically fully associative cache, match against entries

35

Translation Look-aside Buffer (TLB)

Virtual address

.' VPaget | PPaget ‘|
"1 VPageft | PPage# : Miss
! : |
r VPagett | PPage#l : Real
\ TLB peee
P e . table
Hi
PPage # 0ffsT|
Physical address

ﬁ& 37

Bits in a TLB Entry

+ Common (necessary) bits

e Virtual page number

e Physical page number: translated address

e Valid bit

e Access bits: kernel and user (none, read, write)
+ Optional (useful) bits

e Process tag

e Reference bit

e Modify bit

e Cacheable bit

38

Gl

Hardware-Controlled TLB
o000
¢ On a TLB miss
e If the page containing the PTE is valid (in memory),
hardware loads the PTE into the TLB
» Write back and replace an entry if there is no free entry

e Generate a fault if the page containing the PTE is
invalid, or if there is a protection fault

e VM software performs fault handling
e Restart the CPU

¢ On a TLB hit, hardware checks the valid bit
e If valid, pointer to page frame in memory

e If invalid, the hardware generates a page fault
» Perform page fault handling

w » Restart the faulting instruction
39

Software-Controlled TLB

¢ On a miss in TLB, software is invoked
e Write back if there is no free entry
e Check if the page containing the PTE is in memory
e If not, perform page fault handling
e Load the PTE into the TLB
e Restart the faulting instruction
¢ On TLB hit, same as in hardware-controlled TLB

)

40

Cache vs. TLB

Data
%

Cache

’ Vpage # | offset ‘

T it

Miss Miss

‘ ppage # | offset ‘

< Similarities + Differences
e Cache a portion of memory e Associativity
e Write back on a miss e Consistency

42

10

TLB Related Issues

¢ What TLB entry to be replaced?
e Random
e Pseudo LRU
+ What happens on a context switch?
e Process tag: invalidate appropriate TLB entries
e No process tag: Invalidate the entire TLB contents
+ What happens when changing a page table entry?
e Change the entry in memory
e Invalidate the TLB entry

43

Summary: Virtual Memory

¢ Virtual Memory

e Virtualization makes software development easier and enables
memory resource utilization better

e Separate address spaces provide protection and isolate faults

¢ Address Translation

e Translate every memory operation using table (page table,
segment table).

e Speed: cache frequently used translations

+ Result
e Every process has a private address space

e Programs run independently of actual physical memory
addresses used, and actual memory size

e Protection: processes only access memory they are allowed to

11

