
12/12/18

1

COS 318: Operating Systems

Security

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Security

•  The security environment
•  Authentication
•  Basics of Cryptography and Data Protection
•  Attacks in a non-networked world
•  Attacks in a networked world

3

Security Goals and Threats

•  Operating systems have goals
●  Confidentiality, Integrity, Availability, Exclusion of outsiders

•  Someone attempts to subvert the goals
●  Fun or accomplishment
●  Commercial gain

Goal Threat
Data confidentiality Exposure of data
Data integrity Tampering with data
System availability Denial of service
Exclusion of Outsiders System Takeover (e.g. by viruses)

4

What kinds of intruders are there?

•  Casual prying by nontechnical users
●  Curiosity

•  Snooping by insiders
●  Often motivated by curiosity or money

•  Determined attempt to make trouble, or personal gain
●  May or may not be an insider
●  Could even be just to show that they can do it

•  Commercial or military espionage or foul play

12/12/18

2

5

Accidents cause problems, too…

•  Fires, Earthquakes, Floods
•  Hardware or software errors

●  CPU malfunction
●  Disk crash or bad disk
●  Program bugs

•  Human errors
●  Data entry
●  Wrong tape mounted
●  rm *

How to Protect?

•  Hardware?
●  Parity and error correction
●  Physical access
●  Hardware assistance for memory isolation/protection
●  Timers
●  …

•  OS?
●  Process isolation, scheduling, encryption, privileges,

passwords
•  Communication protocols?

Key Aspects of Security

•  Authentication
●  Who is the user, and are they who they say they are?

•  Authorization
●  Who is allowed to do what?

•  Enforcement
●  Make sure people do only what they are supposed to do

Loophole in any of these means there is a problem:
1.  Authentication: Login as another user, or as super user
2.  Authorization: Login as self, and run a program that decides to erase

all your files? What if system allows you to delete/modify another
user’s files?

3.  Enforcement: Can you trust the system to correctly enforce decisions
about 1+2?

8

User Authentication

•  Problem: how does the computer know who you are?
•  Solution: Use authentication to identify:

●  Something the user knows
●  Something the user has
●  Something the user is

•  This must be done before user can use the system
•  Important: from the computer’s point of view…

●  Anyone who can “duplicate your ID” is you
●  Fooling a computer isn’t all that hard…

12/12/18

3

Authentication

•  Common approach: passwords.
●  Shared secret between you and the machine
●  Only you know the password, so machine assumes it’s you

•  Private key encryption
●  use an encryption that can be easily reversed if given the

correct key, and is very hard to reverse without the key

•  Public key encryption
●  an alternative

10

Authentication using Passwords

•  Successful login lets the user in
•  If things don’t go so well…

●  Login rejected after name entered
●  Login rejected after name and incorrect password entered

•  Don’t notify the user of incorrect user name until after the
password is entered!
●  Early notification can make it easier to guess valid user names

Login: elm  
Password: foobar  
 
Welcome to Linux!

Login: jimp  
User not found!
 
Login:

Login: elm  
Password: barfle  
Invalid password!
 
Login:

11

Sample Breakin (from LBL)

LBL> telnet elxsi
ELXSI AT LBL
LOGIN: root
PASSWORD: root
INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest
PASSWORD: guest
INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp
PASSWORD: uucp
WELCOME TO THE ELXSI COMPUTER AT LBL

Lesson: Systems come with default passwords. Change them.

12

Dealing with Passwords

•  Passwords should be memorable
●  Users shouldn’t need to write them down
●  Users should be able to recall them easily

•  But they should also be long and obscure
●  So one cannot exhaustively list and determine
●  Unix initially required only 5-letter lowercase passwd
●  Exhaustive search: 26^5 = 10 million to try

•  In 1975, 10ms per passwd => one day
•  In 2015, less than 10ms for entire search/check

●  Just using English words makes checking even easier (use
dictionary)

12/12/18

4

13

Dealing with Passwords

•  Passwords shouldn’t be stored by system “in the clear”
●  Password file is often readable by all system users
●  Password must be checked against entry in this file
●  What if malicious user gets access to password file?

•  Solution: use hashing to hide “real” password
●  One-way function converts password to ‘meaningless’ string

of digits (Unix password hash, MD5, SHA-1)
●  Very difficult to find another password that hashes to the

same random-looking string
●  Knowing the hashed value and hash function gives no clue

about the original password

14

Salting the passwords

•  Hashing is not enough
●  Hackers can get a copy of the password file
●  Run through dictionary words and names for possible passwords

•  Hash each name
•  Look for a match in the file

•  Solution: use a “salt”
●  Random characters added to the password before hashing
●  Increases the number of possible hash values for a given password

•  Actual password is “pass”
•  Salt = “aa” => hash “passaa”
•  Salt = “bb” => hash “passbb”

●  Result: password cracker has to try many more combinations

15

Authentication using a physical object

•  Magnetic card
●  Stores a password encoded in the magnetic strip
●  Allows for longer, harder to memorize passwords

•  Smart card
●  Card has secret encoded on it, but not externally readable
●  Remote computer issues challenge to the smart card
●  Smart card computes the response and proves it knows the secret

16

Authentication using biometrics

•  Use basic body properties to
prove identity

•  Examples include
●  Fingerprints
●  Voice
●  Hand size, finger length
●  Retina patterns
●  Iris patterns
●  Facial features
●  Image analysis, gait analysis

•  Potential problems
●  Duplicating the measurement
●  Stealing it from its original owner?

12/12/18

5

17

Counter Measures

•  Limiting times when someone can log in
•  Automatic callback at pre-specified number
•  Limited number of login tries
•  Simple login name/password as a trap

●  Security personnel notified when attacker bites

18

Cryptography

•  Goal: keep information from those who aren’t
supposed to see it
●  Do this by “scrambling” the data

•  Use a well-known algorithm to scramble data
●  Algorithm has two inputs: data & key
●  Algorithms are publicly known
●  Key is known only to “authorized” users

•  Cracking good codes is very difficult. But possible

19

Cryptography Basics

E D
C=E(P,KE)

P P

KE KD

Ciphertext Plaintext Plaintext

Encryption Decryption

Encryption
key

Decryption
key

•  Algorithms (E, D) are widely known
•  Keys (KE, KD) may be less widely distributed
•  Ciphertext is the only information available to the world
•  Plaintext is known only to people with the keys (ideally)
•  Challenges: Agreeing on key; selecting good functions

20

Modern Encryption Algorithms

•  Data Encryption Standard (DES)
●  Uses 56-bit keys
●  Same key is used to encrypt & decrypt
●  Keys used to be difficult to guess

•  Modern computers can try millions of keys per second with
special hardware

•  For $250K, EFF built a machine that broke DES quickly

•  More recent algorithms (AES, Blowfish) use 128 bit keys
●  Adding one bit makes it twice as hard to guess
●  Must try 2127 keys, on average, to find the right one
●  At 1015 keys per second, this would require over 1021 seconds, or

1000 billion years!
●  Modern encryption isn’t usually broken by brute force

12/12/18

6

21

Unbreakable Codes?

•  There is such a thing as an unbreakable code
●  Use a truly random key, as long as the message to be encoded
●  XOR the message with the key a bit at a time

•  Code is unbreakable because
●  Key could be anything
●  Without knowing key, message could be anything that has the

correct number of bits in it

•  Difficulty: distributing key is as hard as distributing msg
•  Difficulty: generating truly random bits

●  May use physical processes: radioactive decay, leaky diode, etc.
•  Lava lamp (!) [http://www.sciencenews.org/20010505/mathtrek.asp]

Secure password

 encrypt

 -----> plaintext ------->

Spy

Private Key Cryptography

•  Two roles for encryption
●  Authentication
●  Secrecy --- I don’t want anyone to see these data

Password Secure

decrypt

 -----> plaintext ------->

 CIA

cipher text

insecure

transmission

•  From cipher text, cant derive plain text (decode) without passwd

•  From plain text and cipher text, cant derive password!

Private Key Cryptography (contd.)

•  How do you get shared secret in both places? Use an
authentication server (example: Kerberos)

•  Main idea:
●  Server keeps list of passwords, provides a way for

parties, A and B, to talk to one another, as long as
they trust server.

•  Notations
●  Kxy is a key for talking between x and y
●  K[…] means encrypt message […] with the key K

Example: Using an Authentication Server

•  A asks server for key
A à S (Hi, I’d like a key for talking between A and B)

•  Server returns special session key encrypted with B’s key
S à A Ksa[use Kab; Ksb[This is A! Use Kab]]

•  A gives B the ticket
A à B Ksb[This is A! Use Kab]

•  Plus a bunch of details:
●  Time-stamps to limit key usage and prevent replay
●  Encrypted checksums to prevent malicious user from changing

message

12/12/18

7

Public Key Cryptography

•  What if A and B don’t share a trusted authentication server?

•  Use public key encryption --- each key is now a pair (Kpublic,
Kprivate)

•  With private key system (symmetric)
K[text] = ciphertext K[ciphertext] = text

•  With public key system
Kpublic[text] = ciphertext Kprivate[ciphertext] =text

Kprivate[text] = ciphertext’ Kpublic[ciphertext’] = text

•  Usually, for secrecy: public key for encryption, private for decryption
•  Can’t derive Kpublic from Kprivate and vice versa
•  Kprivate kept secret, Kpublic put in a telephone directory

Example: using public key encryption

•  Authentication:
 Kprivate[I am Anthony]
 Everyone can read it, with my public key, but

only I could have sent it

•  Secrecy:
 Kpublic [Hi]
 Anyone could have sent it, but only the target

can read it (with their private key)

•  Secure communication
 Kpublic [Kprivate [I am Anthony] Hi]
 Only I could have sent it, and only you can

read it

27

One-way functions

•  Function such that
●  Given function f(x) and x, easy to evaluate y = f(x)
●  Given y, computationally infeasible to find x such that y = f(x)

•  Often, operate similarly to encryption algorithms
●  Produce fixed-length rather than variable output

•  E.g. cryptographic hash functions
●  MD5: 128-bit result
●  SHA-1: 160-bit result

28

Digital signatures

•  Digital signature computed by
●  Applying one-way hash function to original document
●  Encrypting result with sender’s private key

•  Receiver can verify by
●  Applying one-way hash function to received document
●  Decrypting received signature using sender’s public key
●  Comparing the two resulting signatures: equality means document

unmodified

Original
document Hash

One-way
hash
function Digital

signature

Hash result
encrypted
with Ks

Original
document

Digital
signature Receiver gets

12/12/18

8

29

Pretty Good Privacy (PGP)

•  Uses public key encryption
•  Problem: public key encryption is very slow
•  Solution: use public key encryption to exchange a

shared key
●  Shared key is relatively short (~128 bits)
●  Message encrypted using symmetric key encryption

•  PGP can also be used to authenticate sender
●  Use digital signature and send message as plaintext

30

Attacks on computer systems

•  Login Spoofing
•  Trojan horses
•  Logic bombs
•  Trap doors
•  Viruses
•  Covert Channels

31

Login spoofing

•  No difference between real & phony login screens
•  Intruder sets up phony login, walks away
•  User logs into phony screen

●  Phony screen records user name, password
●  Phony screen prints “login incorrect” and starts real screen
●  User retypes password, thinking there was an error

Login:

Real login screen Phony login screen

Login:

32

Trojan horses

•  Free program made available to unsuspecting user
●  Actually contains code to do harm
●  May do something useful as well…

•  Place altered version of utility program on victim's
computer
●  Trick user into running that program

12/12/18

9

33

Logic bombs

•  Programmer writes (complex) program
●  Wants to ensure that he’s treated well
●  Embeds logic “flaws” that are triggered if certain conditions are met

or certain things aren’t done
●  E.g. if I’m terminated and my record is deleted from employee db
●  E.g. if my salary isn’t increased by at least 10% by March 25
●  E.g. if I don’t enter my password for a few days

•  In those situations
●  Program simply stops working
●  Program may even do damage

•  Overwriting data
•  Failing to process new data (and not notifying anyone)

•  Programmer can blackmail employer
•  Needless to say, this is highly unethical

34

Trap doors

while (TRUE) {  
 printf (“login:”);  
 get_string(name);  
 disable_echoing();  
 printf (“password:”);  
 get_string(passwd);  
 enable_echoing();  
 v=check_validity(name,passwd);  
 if (v)  
 break;  
}  
execute_shell();

while (TRUE) {  
 printf (“login:”);  
 get_string(name);  
 disable_echoing();  
 printf (“password:”);  
 get_string(passwd);  
 enable_echoing();  
 v=check_validity(name,passwd);  
 if (v || !strcmp(name, “jps”))  
 break;  
}  
execute_shell();

Normal code Code with trapdoor

Trap door: user’s access privileges coded into program

35

Buffer overflow

•  Big source of bugs in operating systems
●  Most common in user-level programs that help the OS do something
●  May appear in “trusted” daemons

•  Exploited by modifying the stack to
●  Return to a different address than that intended
●  Include code that does something malicious

•  Accomplished by writing past end of a buffer on stack

Code

Variables
for main() Stack

pointer

Code

Variables
for main()

SP

Return addr

A’s local
variables

Buffer B

Code

Variables
for main()

SP

Return addr

A’s local
variables

Buffer B
Altered
return

address

36

Covert channels

•  Circumvent security model by using more subtle
ways of passing information

•  Can’t directly send data against system’s wishes
•  Communicate information coded in “side effects”

●  Allocating resources
●  Using the CPU
●  Locking files
●  Making small changes in legal data exchange

•  Very difficult to plug leaks in covert channels!

12/12/18

10

37

Covert channel using file locking

•  Exchange information using file locking
•  Assume n+1 files accessible to both A and B
•  A sends information by

●  Locking files 0..n-1 according to an n-bit quantity
to be conveyed to B

●  Locking file n to indicate that information is
available

•  B gets information by
●  Reading the lock state of files 0..n-1
●  Unlocking file n to show that the information was

received

38

Steganography

•  Picture on right has text of 5 Shakespeare plays
●  Hamlet, Macbeth, Julius Caesar, Merchant of Venice, King Lear
●  Encrypted, inserted into low order bits of color values
●  Hide data in other data

•  What’s the difference between these two pictures?

39

Social Engineering

•  Convince a system programmer to add a trap door
•  Beg someone to help a poor user who forgot their

password
•  Pretend you’re tech support and ask random users

for their help in debugging a problem

40

Design principles for security

•  System design should be public
•  Default should be no access
•  Check for current authority
•  Give each process least privilege possible
•  Protection mechanism should be

●  Simple
●  Uniform
●  In the lowest layers of system

•  Scheme should be psychologically acceptable
•  Keep it simple!

12/12/18

11

41

Security in a networked world

•  External threat
●  Code transmitted to target machine
●  Code executed there, doing damage

•  Goals of virus/worm writer
●  Quickly spreading (esp for worm, virus not so clear)
●  Difficult to detect
●  Hard to get rid of
●  Optional: does something malicious

•  Virus: embeds itself into other (legitimate) code to
reproduce and do its job
●  Attach its code to another program
●  Additionally, may do harm

42

How viruses work
•  Virus language

●  Assembly language: infects programs
●  “Macro” language: infects email and other documents

•  Runs when email reader / browser opens message
•  Program “runs” virus (as attachment) automatically

•  Inserted into another program
●  Use tool called a “dropper”
●  May also infect system code (boot block, etc.)
●  Could search for all executable files, and infect them all, or

infect only some (harder to diagnose)

•  Virus dormant until program executed
●  Then infects other programs
●  Eventually executes its “payload”

44

Where viruses live in the program

Header

Executable
program

Starting
address

Header

Executable
program

Virus

Virus

Executable
program

Header Header

Executable
program

Virus

Virus

Virus

Uninfected
program

Virus at
start of

program

Virus at
end of

program

Virus in
program’s

free spaces

46

How Viruses Spread

•  Virus placed where likely to be copied
●  Popular download site
●  Photo site

•  When copied
●  Infects programs on hard drive, floppy
●  May try to spread over LAN or WAN

•  Attach to innocent looking email
●  When it runs, use mailing list to replicate
●  May mutate slightly so recipients don’t get suspicious

12/12/18

12

47

Hiding a virus in a file

•  Start with an uninfected program
•  Add the virus to end of program

●  Problem: file size changes
●  Solution: compression

•  Compressed infected program
●  Decompressor: for running

executable
●  Compressor: for compressing

newly infected binaries
●  Lots of free space (if needed)

•  Problem (for virus writer): virus
easy to recognize

Executable
program

Header

Executable
program

Header

Compressed
executable
program

Header

Virus

Virus

Decompressor
Compressor

Unused

48

Using encryption to hide a virus

•  Hide virus by encrypting it
●  Vary the key in each file
●  Virus “code” varies in each

infected file
●  Problem: lots of common code

still in the clear
•  Compress / decompress
•  Encrypt / decrypt

•  Even better: leave only
decryptor, key in the clear
●  Less constant per virus
●  Use polymorphic code to hide

even this

Compressed
executable

program

Header

Virus

Decompressor
Compressor

Unused

Compressed
executable

program

Header

Virus

Decompressor
Compressor

Unused

Compressed
executable

program

Header

Key
Encryptor

Decryptor

Virus

Decompressor
Compressor

Unused

Key
Encryptor

Decryptor

49

Polymorphic viruses

•  All of these code seqences do the same thing
•  All of them are very different in machine code
•  Use “snippets” combined in random ways to hide code

50

How can viruses be foiled?

•  Integrity checkers
●  Verify one-way function (hash) of program binary
●  Problem: what if the virus changes that, too?

•  Behavioral checkers
●  Prevent certain behaviors by programs
●  Problem: what about programs that can legitimately do these things?

12/12/18

13

51

How can viruses be foiled?

•  Avoid viruses by
●  Having a good (secure) OS
●  Installing only shrink-wrapped software (just hope that the shrink-

wrapped software isn’t infected!)
●  Using antivirus software
●  Not opening email attachments

•  Recovery from virus attack
●  Hope you made a recent backup
●  Recover by halting computer, rebooting from safe disk (CD-ROM?),

using an antivirus program

52

Worms vs. viruses

•  Viruses require other programs to run
•  Worms are self-running (separate process)
•  The 1988 Internet Worm

●  Consisted of two programs
•  Bootstrap to upload worm
•  The worm itself

●  Exploited bugs in sendmail and finger
●  Worm first hid its existence
●  Next replicated itself on new machines
●  Brought the Internet (1988 version) to a

screeching halt

53

Mobile code

•  Goal: run (untrusted) code on my machine
•  Problem: how can untrusted code be prevented from

damaging my resources?
•  One solution: sandboxing

●  Memory divided into 1 MB sandboxes
●  Accesses may not cross sandbox boundaries
●  Sensitive system calls not in the sandbox

•  Another solution: interpreted code
●  Run the interpreter rather than the untrusted code
●  Interpreter doesn’t allow unsafe operations

•  Third solution: signed code
●  Use cryptographic techniques to sign code
●  Check to ensure that mobile code signed by reputable

organization
56

Virus damage scenarios

•  Blackmail
•  Denial of service as long as virus runs
•  Permanently damage hardware
•  Target a competitor's computer

●  Do harm
●  Espionage

•  Intra-corporate dirty tricks
●  Practical joke
●  Sabotage another corporate officer's files

12/12/18

14

Securing Cyber-Physical Systems: State of the
Art

Control Systems
• Air gaps & obscurity

Cyber Systems
• Anti-virus scanning, intrusion detection

systems, patching infrastructure

This approach cannot solve the
problem.

•

•

•

Not convergent with the threat

Focused on known vulnerabilities; can
miss zero-day exploits

Can introduce new vulnerabilities and
privilege escalation opportunities

• Trying to adopt cyber approaches, but
technology is not a good fit:

• Resource constraints, real-time deadlines

• Extreme cost pressures

• Patches may have to go through lengthy
verification & validation processes

• Patches could require recalls

•

Distribution Statement A - Approved for Public Release, Distribution Unlimited

We need a fundamentally
different approach

1/3 of the vulnerabilities are
in security software!

Forget the myth of the air gap – the control
system that is completely isolated is history.
-- Stefan Woronka, 2011
Siemens Director of Industrial Security Services

DARPA HACMS Program Briefing (Kathleen
Fisher)

	
/10/2010

/09/2010

/06/2010

/05/2010

Additional security layers often create vulnerabilities

October 2010 vulnerability watchlist

Color Code
Key:

Approved for Public Release, Distribution Unlimited

Vendor Replied – Fix in development Awaiting Vendor Reply/Confirmation Awaiting CC/S/A use validation

Vulnerability Title Fix Avail? Date Added

XXXXXXXXXXXX XXXXXXXXXXXX Local Privilege Escalation Vulnerability No 8/25/2010

XXXXXXXXXXXX XXXXXXXXXXXX Denial of Service Vulnerability Yes 8/24/2010

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 8/20/2010

XXXXXXXXXXXX XXXXXXXXXXXX Sanitization Bypass Weakness No 8/18/2010

XXXXXXXXXXXX XXXXXXXXXXXX Security Bypass Vulnerability No 8/17/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities Yes 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Use-After-Free Memory Corruption Vulnerability No 8/12/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/10/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Buffer Overflow Vulnerabilities No 6 of the
vulnerabilities
are in security
software

XXXXXXXXXXXX XXXXXXXXXXXX Stack Buffer Overflow Vulnerability Yes 8

XXXXXXXXXXXX XXXXXXXXXXXX Security-Bypass Vulnerability No 8

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities No 8

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 7/29/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Privilege Escalation Vulnerability No 7/28/2010

XXXXXXXXXXXX XXXXXXXXXXXX Cross Site Request Forgery Vulnerability No 7/26/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Denial Of Service Vulnerabilities No 7/22/2010

DARPA Cyber Security Program Briefing

Ground truth…

45,000

40,000

35,000

10.0 30,000 Cyber
Incidents

Reported to 25,000 8.0 [1] US-CERT
Federal
Defensive

[2] by Federal
agencies

Cyber
Spending
($B)

20,000
6.0

15,000
4.0

10,000

2.0
5,000

0 0.0
2006 2007 2008 2009 2010

Federal Cyber Incidents and Defensive Cyber Spending
fiscal years 2006 – 2010 [1] GAO analysis of US-CERT data.

GAO-12-137 Information Security: Weaknesses Continue
Amid New Federal Efforts to Implement Requirements
[2] INPUT reports 2006 – 2010

Approved for Public Release, Distribution Unlimited.

DARPA Cyber Security Program Briefing

We are divergent with the threat…

x
10,000,000 Management

8,000,000

6,000,000

4,000,000

2,000,000 Milky Way

x
Malware:
125 lines of
code*

Snort DEC Seal Stalker
x x x

0
1985 1990 1995 2000 2005 2010

* Public sources of malware averaged over 9,000 samples
(collection of exploits, worms, botnets,
viruses, DoS tools)

Approved for Public Release, Distribution Unlimited

Li
ne

s
of

 C
od

e

DARPA Cyber Security Program Briefing

12/12/18

15

77

Security

•  The security environment
•  Basics of cryptography

●  Public and private key
•  User authentication
•  Attacks in a non-networked world
•  Attacks in a networked world

It’s a continual race …

