9/19/18

COS 318: Operating Systems
o0
Overview

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

 foma

Important Times

¢ Precepts:
e Mon: 7:30-8:20pm, 105 CS building
e This week (TODAY):

* Tutorial on Assembly programming and kernel debugging

¢ Project 1

e Design review:
* 9/24: 3:00 pm — 7:00 pm (Signup online), 010 Friend Center
e Project 1 due: Sunday 9/30 at 11:55pm

¢ Immediate To-Do:
o Make sure you have your project partner

ﬁ®f 2

© fo

Today

¢ Overview of OS functionality
¢ Overview of OS components
¢ Interacting with the OS

+ Booting a Computer

Hardware of A Typical Computer

‘CPU‘ ‘CPU‘
G

o=

I/0 bus

iE -

L1

==

®

Network

9/19/18

An Overview of HW Functionality
o000
+ Executing the machine code (CPU, cache, memory)

e instructions for ALU, branch, memory operations
e instructions for communicating with /0 devices
¢+ Performing 1/O operations
e |/O devices and the CPU can execute concurrently
e Every device controller is in charge of one device type
e Every device controller has a local buffer
o CPU moves data btwn main memory and local buffers
e |/O is from the device to local buffer of device controller
e Device controller uses interrupt to inform CPU it is done
+ Protection
w e Timer, paging (e.g. TLB), mode bit (e.g., kernel/user)
Q2

LAY
o

Software in a Typical Computer

L
CPU Hemery Applications
Libraries, Runtime Systems
CPU Operating System
BIOS
=t LN LL.

Apps
Data

q% e Nlmk

Typical Unix OS Structure

Application

Libraries User level

Kernel level

Portable OS Layer

Typical Unix OS Structure
°

User function calls
written by programmers and
compiled by programmers.

Application

1

Libraries

Portable OS Layer

9/19/18

Typical Unix OS Structure

« Written by elves
« Objects pre-compiled

« Defined in headers
Application « Input to linker
PP « Invoked like functions
« May be “resolved” when
Libraries program is loaded

Portable OS Layer

Application: How it’s created

’ foo.c H gcc Hfoo.s H as Hfoo.o
’ bar.c H gcc H bar.s H as H bar.o

gcc can compile, assemble, and link together

Compiler (part of gcc) compiles a program into assembly
Assembler compiles assembly code into relocatable object file
Linker links object files into an executable

For more information:

e Read man page of a.out, elf, Id, and nm

e Read the document of ELF

LR 2R R 2R 4

Application: How it’s executed

+ On Unix, “loader” does the job
e Read an executable file
e Layout the code, data, heap and stack
e Dynamically link to shared libraries
e Prepare for the OS kernel to run the application

[| foptesten
Shared
library

What an executable application looks like

¢ Four segments
e Code/Text — instructions
e Data — global variables
e Stack
e Heap
+ Why:
e Separate code and data?

e Have stack and heap go
towards each other?

2" -1
L

g

Heap

Initialized data

Code 0

9/19/18

Responsibilities for the segments

¢ Stack

e Layout by ?

e Allocated/deallocated by ?

e Local names are absolute/relative?
¢ Heap

e Who sets the starting address?

o Allocated/deallocated by ?

e How do application programs manage it?
+ Global data/code
e Who allocates?
e Who defines names and references?
e Who translates references?
e Who relocates addresses?
e Who lays them out in memory?

Typical Unix OS Structure

Application

Libraries

Portable OS Layer “Guts” of system calls

Must Support Multiple Applications

¢ In multiple windows
e Browser, shell, powerpoint, word, ...

¢ Use command line to run multiple applications
% Is —al | grep ‘Ad’
% foo &
% bar &

Multiple Application Processes

Application Application Application

Libraries Libraries Libraries

Portable OS Layer

9/19/18

OS Service Examples Typical Unix OS Structure
o000 ® 00
¢ Examples that are not provided at user level
e System calls: file open, close, read and write
e Control the CPU so that users won’t cause problems
+ while (1); Application + Bootstrap
e Protection: + System initialization
« Keep user programs from crashing o] Libraries : :?ct)e;gl\i)i:::r&?‘i\?:feptlon
* Keep user programs from crashing eachother | | oo e e — - o « Memory management
+ Examples that are provided at user level * Mode switching
o Read time of day Portable OS Layer * Processor management
o Protected user-level activities
Today OS components
o000 o000

+ Overview of OS functionality
+ Overview of OS components
+ Interacting with the OS

+ Booting a Computer

20

¢ Resource manager for each HW resource

e processor management (CPU)

e memory management

o file system and secondary-storage management

e |/O device management (keyboards, mouse, ...)
+ Additional services:

e networking

e window manager (GUI)

e command-line interpreters (e.g., shell)

e resource allocation and accounting

e protection
» Keep user programs from crashing OS
« Keep user programs from crashing each other

9/19/18

Processor Management Memory Management
U | U |
+ Goals + Goals
e Overlap between I/0 and
computation e Support for programs to run
e Time sharing CPU | 1O and to be written more easily
« Multiple CPU allocation CPU o Allocation and management
« Issues e Transfers from and to
L3 cache: ~50
e Do not waste CPU resources |cpy secondary storage
e Synchronization and mutual 1/0 ¢ Issues ‘ DRAM: ~200-500x ‘
exclusion Gy e Efficiency & convenience
e Fairness and deadlock cpU e Fairness | IDIEfe: =&l 2 |
CPU e Protection | Archive storage: >1000M x |
I/O Device Management File System
oe oe
+ Goals + Goals:
e Interactions between * Manage disk bI.OCKS .
devices and applications e Map between files and disk blocks | {jger | User n
o Ability to plug in new User 1 Usern + Typical file system calls
devices e Open a file with authentication Tl et Saroess
- e Read/write data in files 4
¢ Issues Library support e Close afile))
o Efficiency ; ; + lssues File File
o Faimness Driver Driver o Reliability -
e Protection and sharing /o 0 e Safety
device device * Efficiency o
e Manageability %
v
24 25

9/19/18

Window Systems Summary
o000 o000
+ Goals + Overview of OS functionality
e Interacting with a user e Layers of abstraction
e Interfaces to examine and e Services to applications
manage apps and the system m o Resource management
+ Issues g ¢ Overview of OS components

e Inputs from keyboard, mouse, ™
touch screen, ...

e Display output from applications
and systems

o Where is the Window System?

e Processor management
e Memory management
e |/O device management
o File system

« Allin the kernel (Windows) ¢ Window system
« All at user level ® ...
® « Split between user and kernel (Unix) ®
%@»}ﬂ 26 %@»}ﬂ 27
Today How the OS is Invoked
00 o060
+ Overview of OS functionality + System calls
¢ Overview of OS components ¢ Exceptions
¢ Interacting with the OS e Normal or program error: faults, traps, aborts
+ Booting a Computer e Special software generated: INT 3

o Machine-check exceptions

¢ Interrupts
e Hardware (by external devices)
e Software: INT n

¢ See Intel document volume 3 for details

®, 28 @ 29

9/19/18

Interrupts Interrupt and Exceptions (1)
U | U |
+ Raised by external events Vector # Mnemonic Description Type
¢ Interrupt handler is in kernel o: — 0 #DE Divide error (by zero) Fault
¢ Eventually resume the 1: 1 #DB Debug Faultitrap
interrupted process ';;i’é:‘eﬁt 2 NMI nterrupt Interrupt
s A way to i 3 #BP Breakpoint Trap
e Switch CPU to another #1: 4 |#OF Overflow Trap
process 5 #BR BOUND range exceeded Trap
e Overlap I/0 with CPU N: 6 #UD Invalid opcode Fault
o Handle other Iong-latency 7 #NM Device not available Fault
events 8 #DF Double fault Abort
9 Coprocessor segment overrun Fault
10 #TS Invalid TSS (Task State Segment). Kernel/HW bug.
Interrupt and Exceptions (2) System Calls
oe oe
Vector# | Mnemonic Description Type + Operating system API
11 #NP Segment not present Fault e Interface between an application and the operating
12 #SS Stack-segment fault Fault system kernel
13 #GP General protection Fault * Categories of SyStem calls
14 |#PF Page fault Fault e Process management
15 Reserved Faul e Memory management
16 #MF Floating-point error (math fault) Fault o File management
17 |#Ac Alignment check Fault ® Device m.ana!gement
18 |#MC Machine check Abort e Communication
Reserved
User defined Interrupt

32

33

9/19/18

How many system calls? System Call Mechanism
U | U |
+ 6th Edition Unix: ~45 + Assumptions
¢ POSIX: ~130 e User code can be arbitrary
: e User code cannot modify kernel User User

¢ FreeBSD: ~130 memory program program
¢ Linux: ~250 + Design Issues G -
+ Windows 7: D) e User makes a system call with @ %

’ ’ parameters

e The call mechanism switches
code to kernel mode

e Execute system call
e Return with results

entry

Kernel in
protected memory

a® * @

o 35

OS Kernel: Trap Handler Interrupt, trap and syscall vector
o0 o0
. .
Toterrupt . Tablg set up by OS kernel; pointers to code to run
) service on different events
HW Device Syscall table\ L routines
Interrupt Processor Interrupt
- 1 Register Vector Table
System Call ystem
yeem S T~ service E'/i System
HW exceptions dispatcher serviees (| | » handleTimerinterrupt() {
SW exceptions o
Exception }
Virtual address dispatcher Exception
exceptions handlers

VM
/ manager’ s

pager

s U Y R e S > handleDivideByZero() {
‘)

HW support

""""""" > handleSystemCall() {

}

36

9/19/18

From http://minnie.tuhs.org/UnixTree/V6 Passing Parameters
V6/usr/sys/ken/: t oec¢ oec¢
HsmRysTenSysent.e — p— + Pass by registers
Find atmost [5 7] related files. _Search é. ::l:f\::t ;: .
I inchdng s o ths version of Unix o o " o # of registers
' o e . o # of usable registers
s bl . .
. 5 il f: e # of parameters in system call
Seitmee b K ‘ o Spillfill code in compiler
B e " + Pass by a memory vector (list)
{ ” 0, &getswit, ~ . . .
5 il " o neore % e Single register for starting address
sfork, : 0, cdup, 7 . ,
g il 2: o ke A e Vector in user' s memory
2stomen " 4, eprofil, ’
o it " & o g. + Pass by stack
2, link, . g iz‘ig’d 5 ..
17 cmbanic Z; ‘ / e Similar to the memory vector
0, sgrine. ” e Procedure call convention
3 o "
5 g 7 38 39
Library Stubs for System Calls System Call Entry Point
0 0 0 0
+ Example: EntryPoint:
int read(int fd, char * buf, int size) User switch to kernel stack User
{ RO save context Use; gy
move fd, buf, size to R, Ry, Ry check R stacl
move READ to R % 0 Registers
int $0x80 0 7 & call the real code pointed by R, £
move resuits +d,0 place result in R oo
) restore context Registers
Kernel in switch to user stack Kernel
iret (change to user mode and return) stack Kernel
protected memory memory
(Assumes passing parameters in registers)
@ , 40 @ 41

10

9/19/18

Kernel stacks System call stubs
o000 o000
Per-processor, located in kernel memory. Why can’t the interrupt User Program Kernel
handler run on the stack of the interrupted user process?
main () { file_open(arg1, arg2) {
Running Ready to Run Waiting for I/0) file_open(arg1, arg2);) /I do operation
Syscall
User Stack Proc2 Proc2 Proc2 M ®) (3) (4)
Proc1 Proc1 Proct N N
Mai Mai Mai
=l = = User Stub &) Kernel Stub
Hardware Trap
file_open(arg1, arg2) { > file_open_handler() {
1/0 Driver push #SYSCALL_OPEN . 1l copy arguments
trap /I from user memory
Top Half return Trap Return Il check arguments
Kernel Stack Syscall) (5) file_open(arg1, arg2);
Handler 11 copy return value
User CPU User CPU " t'”“’ user memory
7@» State State 7@» } return;
i o]
Design Issues Backward compatibility...
’ . . The Open Group Base Specifications Issue 6 - . .
IEEE Std 1003.1, 2004 Edition
* SyStem Ca”S Copyright © 2001-2004 The IEEE and The Open Group, All Rights reserved.
e There is one result register; what about more results?
e How do we pass errors back to the caller? NGRS
open - open a file
¢ System calls vs. library calls SYNOPSIS
e What should be system calls?
. 98] ® ginclude <sys/stat.h> @&
e What should be library calls?
#include <fcntl.h>
int open(const char *path, intofflag, ...):
The use of open() to create a regular file is preferable to the use of creat(),
because the latter is redundant and included only for historical reasons.
@/ 45 ®, 47

11

9/19/18

Division of Labor (Separation Of Concerns) Today
o000 o000
Memory management example + Overview of OS functionality
+ Kernel # Overview of OS components
e Allocates “pages” with hardware protection ¢ Interacting with the OS
e Allocates a big chunk (many pages) to library + Booting a Computer
e Does not care about small allocations
¢ Library
e Provides malloc/free for allocation and deallocation
e Applications use them to manage memory
e When reaching the end, library asks kernel for more
%gﬁ 48 %gﬁ 50
Booting a Computer System Boot
o060 2060
+ Power up a computer PMlyrﬁl;:’ayl + Power on (processor waits until Power Good

+ Processor reset
e Set to known state mos(1o)mes 8I0S
e Jump to ROM code Disk bootioader
(for x86, this is the BIOS)
+ Load in the boot loader from
stable storage
+ Jump to the boot loader

+ Load the rest of the operating
system

+ Initialize and run

> Bootloader
instructions
@ and data
Bootloader
copies 08 kernel

Bootloader

0S kernel
2| 08 kernel
instructions

Login app

@) and data

08 kernel copies
login application

> Login app
instructions
and data

2 51

Signal)
+ Processor jumps to a fixed address, which is the
start of the ROM BIOS program

‘@/ COS318 Lec 2

52

12

9/19/18

ROM Bios Startup Program (1)

¢ POST (Power-On Self-Test)
« Stop booting if fatal errors, and report
¢ Look for video card and execute built-in BIOS
code (normally at CO00h)
¢ Look for other devices ROM BIOS code
o IDE/ATA disk ROM BIOS at C8000h 9=818200d)

+ Display startup screen
« BIOS information

+ Execute more tests
* memory
« system inventory

i@ﬁ’ COS318 Lec 2 53

 foma

i@ﬁ’ COS318 Lec 2 54

© fo

ROM BIOS startup program (2)

+ Look for logical devices
e Label them
« Serial ports: COM 1, 2, 3, 4
« Parallel ports: LPT 1,2, 3

e Assign each an I/O address and interrupt numbers
+ Detect and configure Plug-and-Play (PnP) devices
+ Display configuration information on screen

ROM BIOS startup program (3)

+ Search for a drive to BOOT from
e Hard disk or USB drive or CD/DVD
¢ Load code in boot sector
+ Execute boot loader
¢ Boot loader loads program to be booted

e If no OS: "Non-system disk or disk error - Replace and
press any key when ready"”

+ Transfer control to loaded program

e Could be OS or another feature-rich bootloader (e.g.
GRUB), which then loads the actual OS

%

COS318 Lec 2 55

Summary

+ Protection mechanism

e Architecture support: two modes

e Software traps (exceptions)
+ OS structures

o Monolithic, layered, microkernel and virtual machine
¢ System calls

e Implementation

e Design issues

e Tradeoffs with library calls

56

13

