
11/26/18

1

COS 318: Operating Systems

File Structure

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Where Are We?
•  Covered:

●  Management of CPU & concurrency
●  Management of main memory & virtual memory
●  Management of I/O devices

•  Currently --- File Systems
●  This lecture: File Structure

•  Then:
•  Naming and directories
•  Efficiency and performance
•  Reliability and protection

The File System Abstraction

Physical Reality File System Abstraction

block oriented byte oriented (char stream)

physical sector #’s named files

no protection users protected from
 each other

data might be corrupted robust to machine failures
if machine crashes

•  Open, close, read, write … named files, arranged in folders
 or directories

4

File System

◆  Naming
●  File name and directory

◆  File access
●  Read, write, other operations

◆  Buffer cache
●  Reduce client/server disk I/Os

◆  Disk allocation
◆  Layout, mapping files to blocks

◆  Security, protection, reliability, durability

◆  Management tools

File naming

File access

Buffer cache

Disk allocation

Disk Drivers

M
an

ag
em

en
t

11/26/18

2

2

Topics

◆  File system structure
◆  Disk allocation and i-nodes
◆  Directory and link implementations
◆  Physical layout for performance

Typical File Attributes

•  Name
•  Type – needed for systems that support different types
•  Location – pointer to file location on device.
•  Size – current file size.
•  Protection – controls who can read, write, execute
•  Time, date, and user identification – data for

protection, security, and usage monitoring

•  Information about files are kept in the directory structure,
which is maintained on the disk

2

Master Boot Record

•  Starts at first sector of disk

•  End of record lists the partitions on the disk
●  Every partition can have a different file system

•  Upon boot:
●  BIOS reads in and executes MBR
●  Finds active disk partition from MBR
●  First block of active partition (boot block) is loaded and executed
●  That loads in the OS from that partition

•  What does partition and file layout on it look like?

Typical Layout of a Disk Partition

◆  Boot block
●  Code to load and boot OS

◆  Super-block defines a file system
●  File system info: type, no of blocks, ...
●  File metadata area
●  Information about / ptr to free blocks
●  Location of descriptor of root directory

◆  File metadata
●  Each descriptor describes a file

◆  Directories
●  Directory data (directory and file names)

◆  File data
●  Data blocks

3

File metadata
(i-nodes in Unix)

Superblock

Directory data

File data

Boot block

11/26/18

3

File Types – Name, Extension

E xecutable exe,	com,	bin	or
none

ready-to-run	machine-
language	program

Object obj,	o complied,	machine
language,	not	linked

S ource	code c,	p,	pas ,	177,
asm,	a

source	code	in	various
languages

Batch bat,	sh commands 	to	the
command	interpreter

Text txt,	doc textual	data	documents

Word	processor wp,	tex,	rrf,	etc. various 	word-processor
formats

L ibrary lib,	a libraries 	of	routines

P rint	or	view ps,	dvi,	gif AS C II	or	binary	file

Archive arc,	z ip,	tar related	files 	grouped
into	one	file,	sometimes
compressed.

F ile	Type Usual	extens ion Function

Typical File Operations

•  Create
•  Write
•  Read
•  Reposition within file – file seek
•  Delete
•  Truncate
•  Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory.
•  Close (Fi) – move the content of entry Fi in memory to

directory structure on disk.

5

Open A File: Open(fd, name, access)

◆  Various checking (directory and file name lookup, authenticate)
◆  Copy the file descriptors into the in-memory data structure
◆  Create an entry in the open file table (system wide)
◆  Create an entry in PCB
◆  Return user a pointer to “file descriptor”

Open-file table
(system-wide)

File
metadata

File system
info

Directories

File data

File
descriptors
(Metadata)

Process
control
block

. . .

Open
file

pointer
array

Translating from user to system view

•  User wants to read 10 bytes from file starting at byte 2?
●  Seek byte 2, fetch the block, read 10 bytes

•  User wants to write 10 bytes to file starting at byte 2?
●  Seek byte 2, fetch the block, write 10 bytes, write out block

•  Everything inside file system is in whole size blocks
●  Even getc and putc buffers 4096 bytes

•  From now on, file is collection of blocks.

11/26/18

4

File usage patterns

•  How do users access files?
●  Sequential: bytes read in order
●  “Random”: read/write element out of middle of file
●  Content-based access: find me next byte starting with “COS318”

•  How are files used?
●  Most files are small
●  Large files use up most of the disk space
●  Most transfers are small
●  Large files account for most of the bytes transferred

•  Bad news
●  Need everything to be efficient

File system design constraints

•  For small files:
●  Small enough blocks for storage efficiency
●  Files used together should be stored together

•  For large files:
●  Contiguous allocation for sequential access
●  Efficient lookup for random access

•  May not know at file creation whether file will become
small or large

File system design

•  Data structures
●  Directories: file name -> file metadata

•  Store directories as files
●  File metadata: used to find file data blocks of the file
●  Free map: list of free disk blocks

•  How do we organize these data structures?

Data structures for disk management

•  A file header for each file (part of the file meta-data)
●  Disk sectors associated with each file

•  A data structure to track free space on disk
●  Bit map

•  1 bit per block (sector)
•  blocks numbered in cylinder-major order, why?

●  Linked list
●  Others?

•  What about allocation for the blocks associated with a file?

11/26/18

5

7

Contiguous Allocation
◆  Allocate contiguous blocks of

storage
●  Bitmap: find N contiguous 0’s
●  Linked list: find a region (size >= N)

◆  File metadata
●  First block in file
●  Number of blocks

◆  Pros
●  Fast sequential access
●  Easy random access

◆  Cons
●  External fragmentation

(what if file C needs 4 blocks)
●  Hard to grow files

3

File A File B

8

Linked Files

◆  File structure (Alto)
●  File metadata points to 1st block

on storage
●  A block points to the next
●  Last block has a NULL pointer

◆  Pros
●  Can grow files dynamically
●  File data tracked similarly to free

list of blocks
●  Doesn’t waste space

◆  Cons
●  Random access: bad
●  Unreliable: losing a block means

losing the rest

File header

null

. . .

Linked files (cont’d)

8

File Allocation Table (FAT)
•  Idea is to keep the linked list metadata

(pointers) in memory, rather than on disk
•  Allocation table at beginning of each volume

◆  N entries for N blocks
◆  Want to keep it in memory

•  File structure (MS-DOS)
●  A file is a linked list of blocks
●  File metadata points to first block of file
●  The entry of first block points to next, …

•  Pros

●  Simple
•  Cons

●  Random access: still not good
●  Wastes space - table for each file

expensive to keep in memory

217 619

399

foo 217

EOF

FAT Allocation Table

0

399

619

11/26/18

6

11

DEMOS (Cray-1)

◆  Idea
●  Try contiguous allocation
●  Allow non-contiguous

◆  File structure
●  Small file metadata has 10 (base,size) pointers
●  Big file has 10 indirect pointers

◆  Pros & Cons
●  Can grow (max 10GB)
●  Fragmentation

File metadata

size9

size1

size0

size9

size1

size0

size9

size1

size0

size9

size1

size0

Single-level Indexed File

•  User declares max size
•  File header holds array of pointers

to disk blocks

•  Pros:
●  Can grow up to a limit
●  Random access is fast
●  No external fragmentation

•  Cons:
●  Clumsy to grow beyond limit
●  Still lots of seeks

File header
Disk
blocks

Single-level indexed files (cont’d) Multi-level Indexed Files

!

outer-index

index table file

11/26/18

7

12

Hybrid Multi-level Indexed Files (Unix)

◆  13 Pointers in a header
●  10 direct pointers
●  11: 1-level indirect
●  12: 2-level indirect
●  13: 3-level indirect

◆  Pros & Cons
●  In favor of small files
●  Can grow
●  Limit is 16G
●  Can have lots of seeking

1
2

data

data
. . .
11
12
13

data
. . .

. . .

data
. . .

. . .

data
. . .
 . . .

13

Original Unix i-node

◆  Mode: file type, protection bits, setuid, setgid bits
◆  Link count: no. of directory entries pointing to this file
◆  Uid: uid of the file owner
◆  Gid: gid of the file owner
◆  File size
◆  Times (access, modify, change)

◆  10 pointers to data blocks
◆  Single indirect pointer
◆  Double indirect pointer
◆  Triple indirect pointer

14

Extents
◆  An extent is a variable number of

blocks
◆  Main idea

●  A file is a number of extents
●  XFS uses 8Kbyte blocks
●  Max extent size is 2M blocks

◆  Index nodes need to have
●  Block offset
●  Length
●  Starting block

•  Microsoft NTFS, Linux EXT4, …
◆  Pros: little metadata, fast seq

access, can grow over time, less
fragmentation

◆  Cons: external fragmentation still
problem

Block offset
length

Starting block

 . . .

15

Naming Files

Can name files via:
◆  Index (i-node number): Not easy for users to specify
◆  Text name: Need to map it to index
◆  Icon: Need to map it to index or to text and then to index

◆  Directories
◆  Table of file name, file index pairs
◆  Map name to file index (where to find the header)
◆  A directory is itself stored as a file

11/26/18

8

•  Bootstrapping: Where do you start looking?
●  Root directory
●  inode #2 on the system
●  0 and 1 used for other purposes

•  Special names:
●  Root directory: “/” (bootstrap name system for users)
●  Current directory: “.”
●  Parent directory: “..”
●  user’s home directory: “~”

•  Using the given names, only need two operations to
navigate the entire name space:
●  cd ‘name’: move into (change context to) directory “name”
●  ls : enumerate all names in current directory (context)

Naming Tricks

16

Directory Organization Examples

◆  Flat (CP/M)
●  All files are in one directory

◆  Hierarchical (Unix)
●  /u/cos318/foo
●  Directory is stored in a file containing (name, i-node) pairs
●  The name can be either a file or a directory

◆  Hierarchical (Windows)
●  C:\windows\temp\foo
●  File extensions have meaning (unlike in Unix). Use the

extension to indicate whether the entry is a directory

17

Mapping File Names to i-nodes

Need to support the following types of operations:

◆  Create/delete
●  Create/delete a directory

◆  Open/close
●  Open/close a directory for read and write

◆  Link/unlink
●  Link/unlink a file

◆  Rename
●  Rename the directory

18

Linear List

◆  Method
●  <FileName, i-node> pairs are

linearly stored in a file
●  Create a file

•  Append <FileName, i-node>
●  Delete a file

•  Search for FileName
•  Remove its pair from the

directory
•  Compact by moving the rest

◆  Pros
●  Space efficient

◆  Cons
●  Linear search
●  Need to deal with fragmentation

/u/jps
 foo bar …
 veryLongFileName

<foo,1234> <bar,
 1235> … <very
LongFileName,
4567>

11/26/18

9

19

Tree Data Structure

◆  Method
●  Store <fileName, i-node> a tree data structure such as B-tree
●  Create/delete/search in the tree data structure

◆  Pros
●  Good for a large number of files

◆  Cons
●  Inefficient for a small number of files
●  More space
●  Complex

…

20

Hashing

◆  Method
●  Use a hash table to map

FileName to i-node
●  Space for name and metadata

is variable sized
●  Create/delete will trigger space

allocation and free
◆  Pros

●  Fast searching and relatively
simple

◆  Cons
●  Not as efficient as trees for very

large directory (wasting space
for the hash table)

…

foo
bar

1234
1235

foobar 4567

21

Number of I/O operations

◆  I/Os to access a byte of /u/cos318/foo
●  Read the i-node and first data block of “/”
●  Read the i-node and first data block of “u”
●  Read the i-node and first data block of “cos318”
●  Read the i-node and first data block of “foo”

◆  I/Os to write a file
●  Read the i-node of the directory and the directory file (as

above)
●  Read or create the i-node of the file
●  Read or create the file itself
●  Write back the directory and the file

◆  Too many I/Os to traverse the directory
●  Solution is to use Current Working Directory (e.g. ./foo)

23

Hard Links

◆  Approach
●  A link to a file with the same i-node
ln source target

●  i.e. the name points to the same i-node
as that of the file being linked to

●  Delete may or may not remove the target
depending on whether it is the last one
(link reference count)

◆  Main issue with hard links?

Directory A

i-node

Directory B

Ref=2

11/26/18

10

23

Symbolic Links

◆  Approach
●  A symbolic link is a pointer to a file
●  Use a new i-node for the link
ln –s source target

●  Carries pathname of original file

◆  Main issue with symbolic links?
◆  Performance?
◆  What if you delete the link?
◆  What if you delete the original file?

Directory B

Link

Directory A

24

Original Unix File System Disk Layout

◆  Simple disk layout
●  Block size is sector size (512 bytes)
●  i-nodes are on outermost cylinders
●  Data blocks are on inner cylinders
●  Use linked list for free blocks

◆  Issues
●  Index is large due to small block size
●  Fixed max number of files
●  i-nodes far from data blocks
●  i-nodes for directory not close together
●  Consecutive blocks of file can be anywhere on disk
●  Poor bandwidth (20Kbytes/sec even for sequential access!)

i-node array

25

BSD FFS (Fast File System)

◆  Use a larger block size: 4KB or 8KB
●  Allow large blocks to be chopped into

fragments, used for small files and pieces at
ends of files

◆  Use bitmap instead of a free list
●  Try to allocate contiguously

foo

bar

26

FFS Disk Layout

◆  i-nodes are grouped together
●  A portion of the i-node array on each cylinder
●  In same cylinder group as data for the files
●  10% reserved disk space, to keep room

◆  Do you ever read i-nodes without
reading any file blocks?
●  4 times more often than reading together
●  examples: ls, make

◆  Overcome rotational delays
●  Skip sector positioning to avoid the context

switch delay
●  Read ahead: read next block right after the

first

i-node subarray

11/26/18

11

Block Group 0

Block Group 1

Block Group 2

Free Space Bitmap Inodes

Data Blocks for files in directories /a, /d, and /b/c

Inodes

Free Space Bitm
ap

Data Blocks for files in directories /b, /a/g, /z

Data Blocks for files in dire
ct

or
ie

s
/d

/q
, /

c,
 a

nd
 /

a/
p

In
od

es

Free Space B
i tm

ap

FFS block groups for better locality

27

What Has FFS Achieved?

◆  Performance improvements
●  20-40% of disk bandwidth for large files (10-20x original)
●  Better small file performance (why?)

◆  We can do better
●  Extent based instead of block based

•  Use a pointer and size for all contiguous blocks (XFS, Veritas
file system, etc)

●  Synchronous metadata writes hurt small file performance

28

Summary

◆  File system structure
●  Boot block, super block, file metadata, file data

◆  File metadata
●  Consider efficiency, space and fragmentation

◆  Directories
●  Consider the number of files

◆  Links
●  Soft vs. hard

◆  Physical layout
●  Where to put metadata and data

