
1

COS 318: Operating Systems

Virtual Memory Design Issues:
Paging and Caching

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Virtual Memory: Paging and Caching

u  Need mechanisms for paging between memory and disk
u  Need algorithms for managing physical memory as a

cache

3

Today’s Topics

u  Paging mechanism
u  Page replacement algorithms
u  When the cache doesn’t work

4

Virtual Memory Paging

u  Simple world
l  Load entire process into memory. Run it. Exit.

u  Problems
l  Slow (especially with big processes)
l  Wasteful of space (doesn’t use all of its memory all the time)

u  Solution
l  Demand paging: only bring in pages actually used
l  Paging: goal is only keep frequently used pages in memory

u  Mechanism:
l  Virtual memory maps some to physical pages, some to disk

2

5

VM Paging Steps

Steps
u  Memory reference

(may cause a TLB miss)
u  TLB entry invalid triggers a page

fault and VM handler takes over
u  Move page from disk to memory
u  Update TLB entry w/ pp#, valid bit
u  Restart the instruction
u  Memory reference again

. . .
subl $20 %esp

movl 8(%esp), %eax
. . . vp#

v vp#
i vp#
v vp#

v vp#

TLB

pp#
pp#
dp#
pp#

pp#

. . .

v

VM
system

pp# v

Reference

fa
ul

t

Restart

6

Virtual Memory Issues

u  What to page in?
l  Just the faulting page or more?
l  Want to know the future…

u  What to replace?
l  Cache (main memory) too small. Which page to replace?
l  Want to know the future...

7

How Does Page Fault Work?

u  User program should not be aware of the page fault
u  Fault may have happened in the middle of the

instruction!
u  Can we skip the faulting instruction?
u  Is a faulting instruction always restartable?

 .
 .
 .
subl $20 %esp
movl 8(%esp), %eax
 .
 .
 .

VM fault handler()
{
 Save states
 .
 .
 .
 iret
}

8

What to Page In?

u  Page in the faulting page
l  Simplest, but each “page in” has substantial overhead

u  Page in more pages each time (prefetch)
l  May reduce page faults if the additional pages are used
l  Waste space and time if they are not used
l  Real systems do some kind of prefetching

u  Applications control what to page in
l  Some systems support for user-controlled prefetching
l  But, applications do not always know

3

9

VM Page Replacement

u  Things are not always available when you want them
l  It is possible that no unused page frame is available
l  VM needs to do page replacement

u  On a page fault
l  If there is an unused frame, get it
l  If no unused page frame available,

•  Choose a used page frame
•  If it has been modified, write it to disk*
•  Invalidate its current PTE and TLB entry

l  Load the new page from disk
l  Update the faulting PTE and remove its TLB entry
l  Restart the faulting instruction

* If page to be replaced is shared, find all page table entries that refer to it

Page
Replacement

Backing Store

u  Swap space
l  When process is created, allocate swap space for it on disk
l  Need to load or copy executables to swap space
l  Need to consider swap space growth

u  Can you use the executable file as swap space?
l  For text and static data
l  But what if the file is moved? Better to copy to swap space

10

Bookkeeping Bits Used by VM Methods

u  Has page been modified?
l  “Dirty” or “Modified” bit set by hardware on store instruction
l  In both TLB and page table entry

u  Has page been recently used?
l  “Referenced” bit set by hardware in PTE on every TLB miss
l  Can be cleared every now and then, e.g. on timer interrupt

Cache replacement policy

u  On a cache miss, how do we choose which entry to
replace?
l  Assuming the new entry is more likely to be used in the near

future
l  In direct mapped caches, not an issue!

u  Policy goal: reduce cache misses
l  Improve expected case performance
l  Also: reduce likelihood of very poor performance

4

17

Which “Used” Page Frame To Replace?

u  Random
u  Optimal or MIN algorithm
u  NRU (Not Recently Used)
u  FIFO (First-In-First-Out)
u  FIFO with second chance
u  Clock (with second chance)
u  Not Recently Used
u  LRU (Least Recently Used)
u  NFU (Not Frequently Used)
u  Aging (approximate LRU)
u  Working Set
u  WSClock

18

Optimal or MIN

u Algorithm:
l  Replace the page that won’t be

used for the longest time
(Know all references in the future)

u Example
l  Reference string:
l  4 page frames
l  6 faults

u  Pros
l  Optimal solution and can be used as an off-line analysis method

u  Cons
l  No on-line implementation

1 2 3 4 1 2 5 1 2 3 4 5

19

Revisit TLB and Page Table

u  Important bits for paging
l  Reference: Set when referencing a location in the page (can

clear every so often, e.g. on clock interrupt)
l  Modify: Set when writing to a location in the page

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# …

PPage # offset

VPage #

TLB
Hit

Miss Page Table
VPage#
VPage#

VPage#

M R

20

Not Recently Used (NRU)
u  Algorithm

l  Randomly pick a page from one of the following sets (in this order)
•  Not referenced and not modified
•  Not referenced and modified
•  Referenced and not modified
•  Referenced and modified

l  Clear reference bits
u  Example

l  4 page frames
l  Reference string
l  8 page faults

u  Pros
l  Implementable

u  Cons
l  Require scanning through reference bits and modified bits

1 2 3 4 1 2 5 1 2 3 4 5

5

21

First-In-First-Out (FIFO)

u  Algorithm
l  Throw out the oldest page

u  Example
l  4 page frames
l  Reference string
l  10 page faults

u  Pros
l  Low-overhead implementation

u  Cons
l  May replace the heavily used pages (time a page first came in to

memory may not be that indicative of its usage)
l  Worst case is program striding through data larger than memory

5 3 4 7 9 11 2 1 15 Page
out

Recently
loaded

1 2 3 4 1 2 5 1 2 3 4 5

22

More Frames → Fewer Page Faults?

u  Consider the following with 4 page frames
l  Algorithm: FIFO replacement
l  Reference string:
l  10 page faults

u  Same string with 3 page frames
l  Algorithm: FIFO replacement
l  Reference string:
l  9 page faults!

u  This is so called “Belady’s
anomaly” (Belady, Nelson, Shedler 1969)

1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5

23

FIFO with 2nd Chance

u  Address the problem with FIFO
l  Check the reference-bit of the oldest page
l  If it is 0, then replace it (write back if dirty, don’t If clean)
l  If it is 1, clear the reference bit, put the page to the end of the list, updating

its “load time” to the current time, and continue searching
l  Looking for an old page not referenced in current clock interval
l  If don’t find one (all pages referenced in current interval) come back to

first-checked page again (its R bit is now 0). Degenerates to pure FIFO.
u  Example

l  4 page frames
l  Reference string:
l  8 page faults

u  Pros
l  Simple to implement

u  Cons
l  The worst case may take a long time

5 3 4 7 9 11 2 1 15 Recently
loaded

Page
out

If ref bit = 1

1 2 3 4 1 2 5 1 2 3 4 5

24

Clock

u  FIFO Clock algorithm
l  Arrange physical pages in circle
l  Clock hand points to the oldest page
l  On a page fault, follow the hand to

inspect pages
u  Clock with Second Chance

l  If the reference bit is 1, set it to 0 and
advance the hand

l  If the reference bit is 0, use it for
replacement

u  Compare with FIFO w/2nd chance
l  What’s the difference?

u  What if memory is very large
l  Take a long time to go around?

Oldest page

6

Nth chance: Not Recently Used

u  Instead of one referenced bit per page, keep an integer
l  notInUseSince: number of sweeps since last use

u  Periodically sweep through all page frames

if (page is used) {
 notInUseSince = 0;
} else if (notInUseSince < N) {
 notInUseSince++;
} else {
 replace page;
}

Implementation note

u  Clock and Nth Chance can run synchronously
l  In page fault handler, run algorithm to find next page to evict
l  Might require writing changes back to disk first

u  Or asynchronously
l  A thread maintains a pool of recently unused, clean pages
l  Find recently unused dirty pages, write mods back to disk
l  Find recently unused clean pages, mark invalid and move to

pool
l  On page fault, check if requested page is in pool
l  If not, evict that page

27

Least Recently Used

u  Algorithm
l  Replace page that hasn’t been used for the longest time

•  Order the pages by time of reference
•  Needs a timestamp for every referenced page

u  Example
l  4 page frames
l  Reference string:
l  8 page faults

u  Pros
l  Good to approximate MIN

u  Cons
l  Difficult to implement

5 3 4 7 9 11 2 1 15 Recently
loaded

Least
Recently
used

1 2 3 4 1 2 5 1 2 3 4 5

28

Approximation of LRU

u  Use CPU ticks
l  For each memory reference, store the ticks in its PTE
l  Find the page with minimal ticks value to replace

u  Use a smaller counter
Most recently used Least recently used

N categories
Pages in order of last reference

LRU

Crude
LRU 2 categories

Pages referenced since
the last page fault

Pages not referenced
since the last page fault

8-bit
count 256 categories 254 255

7

29

Not Frequently Used (NFU)
u  Software counter associated with every page
u  Algorithm

l  At every clock interrupt, scan all pages, and for each page add
the R bit value to its counter

l  At page fault, pick the page with the smallest counter to replace
u Problem

l  Never forgets anything: pages used a lot in the past will have
higher counter values than pages used recently

30

Not Frequently Used (NFU) with Aging
u  Algorithm

l  At every clock interrupt, shift (right) reference bits into counters
l  At page fault, pick the page with the smallest counter to replace

u  Old example
l  4 page frames
l  Reference string:
l  8 page faults

u  Main difference between NFU and LRU?
l  NFU has a short history (counter length)
l  NFU cannot distinguish reference times within a clock interval

u  How many bits are enough?
l  In practice 8 bits are quite good (8*20ms is a lot of history)

00000000
00000000

10000000
00000000

10000000
00000000

11000000
00000000

01000000
10000000

11100000
00000000

10100000
01000000

01110000
10000000

01010000
10100000

00111000
01000000

1 2 3 4 1 2 5 1 2 3 4 5

31

Program Behavior (Denning 1968)

u  80/20 rule
l  > 80% memory references are

within <20% of memory space
l  > 80% memory references are

made by < 20% of code
u  Spatial locality

l  Neighbors are likely to be accessed

u  Temporal locality
l  The same page is likely to be

accessed again in the near future

Pages in memory

Pa

ge
 fa

ul
ts

32

Working Set

u  Main idea (Denning 1968, 1970)
l  Define a working set as the set of pages in the most recent K

page references
l  Keep the working set in memory will reduce page faults

significantly
u  Approximate working set

l  The set of pages of a process used in the last T seconds
u  An algorithm

l  On a page fault, scan through all pages of the process
l  If the reference bit is 1, record the current time as “time of last

use” for the page
l  If the reference bit is 0, check the “time of last use,”

•  If the page has not been used within T, replace the page
•  Otherwise, go to the next

l  If all pages used within T, pick the oldest page that has R=0.
Else if no R=0 pages then pick at random.

8

33

WSClock

u Follow the clock hand
u  If the reference bit is 1

l  Set reference bit to 0
l  Set the current time for the page
l  Advance the clock hand

u  If the reference bit is 0, check “time of last use”
l  If the page has been used within δ, go to the next
l  If the page has not been used within δ and modify bit is 1

•  Schedule the page for page out and go to the next
l  If the page has not been used within δ and modify bit is 0

•  Replace this page

34

Replacement Algorithms

u  The algorithms
l  Random
l  Optimal or MIN algorithm
l  NRU (Not Recently Used)
l  FIFO (First-In-First-Out)
l  FIFO with second chance
l  Clock (with second chance)
l  Not Recently Used
l  LRU (Least Recently Used)
l  NFU (Not Frequently Used)
l  Aging (approximate LRU)
l  Working Set
l  WSClock

u  Which are your top two?

Thrashing

u  Thrashing
l  Paging in and out all the time, I/O devices fully utilized
l  Processes block, waiting for pages to be fetched from disk

u  Reasons
l  Process requires more physical memory than it has
l  Process does not reuse memory well
l  Process reuses memory, but what it needs does not fit
l  Too many processes, even though they individually fit

u  Solution: working set
l  Pages referenced (by a process, or by all) in last T seconds
l  Really, the pages that need to cached to get good hit rate

35

Making the Best of a Bad Situation

u  Single process thrashing?
l  If process does not fit or does not reuse memory, OS can do

nothing except contain damage.

u  System thrashing?
l  If thrashing because of the sum of several processes, adapt:

•  Figure out how much memory each process needs
•  Change scheduling priorities to run processes in groups whose

memory needs can be satisfied (shedding load)
•  If new processes try to start, can refuse (admission control)

9

37

Fitting Working Set in Memory

u  Maintain two groups of processes
l  Active: working set loaded
l  Inactive: working set intentionally not loaded

u  Two schedulers
l  A short-term scheduler schedules active processes
l  A long-term scheduler decides which are active and which

inactive, such that (combined) active working sets fit in memory
u  A key design point

l  How to decide which processes should be inactive
l  Typical method is to use a threshold on waiting time

Working Set: Global vs. Local Page Allocation

u  The simplest is global allocation only
l  Pros: Pool sizes are adaptable
l  Cons: Too adaptable, little isolation (example?)

u  A balanced allocation strategy
l  Each process has its own pool of pages
l  Paging allocates from its own pool and replaces

from its own working set
l  Use a “slow” mechanism to change the

allocations to each pool while providing isolation
u  Design questions:

l  What is “slow?”
l  How big is each pool?
l  When to migrate?

User 1 User 2

?

What about Using Memory for I/O?

u  Explicit read/write system calls
l  Data copied to user process using system call
l  Application operates on data
l  Data copied back to kernel using system call

u  Memory-mapped files
l  Open file as a memory segment
l  Program uses load/store instructions on segment memory,

implicitly operating on the file
l  Page fault if portion of file is not yet in memory
l  Kernel brings missing blocks into memory, restarts process

Advantages to memory-mapped Files

u  Programming simplicity

u  Efficient for large files
l  Operate directly on file, instead of copy in/copy out

u  Zero-copy I/O
l  Data brought from disk directly into page frame. No copies in

kernel

u  Pipelining
l  Process can start working before all the pages are populated

u  Inter-process communication
l  Shared memory segment vs. temporary file

10

Memory-mapped Files and Demand-Paged VM

u  Can go further in unifying memory management across
file buffer and process memory

u  Every process segment is backed by a file on disk
l  Code segment -> code portion of executable
l  Data, heap, stack segments -> temp files
l  Shared libraries -> code file and temp data file
l  Memory-mapped file segments -> memory-mapped files
l  When process ends, delete temp files

44

Address Space in Unix

u  Stack
u  Data

l  Un-initialized: BSS (Block Started by
Symbol)

l  Initialized
l  brk(addr) to grow or shrink

u  Text: read-only
u  Mapped files

l  Map a file in memory
l  mmap(addr, len, prot, flags, fd, offset)
l  unmap(addr, len)

Stack

BSS
Data

Text

Address space

Mapped
file

45

Virtual Memory in BSD4

u  Physical memory partition
l  Core map (pinned): everything about page frames
l  Kernel (pinned): the rest of the kernel memory
l  Frames: for user processes

u  Page replacement
l  Run page daemon until there are enough free pages
l  Early BSD used the basic Clock (FIFO with 2nd chance)
l  Later BSD used Two-handed Clock algorithm
l  Swapper runs if page daemon can’t get enough free pages

•  Looks for processes idling for 20 seconds or more
•  Check when a process should be swapped in

46

Virtual Memory in Linux
u  Linux address space for 32-bit machines

l  3GB user space, 1GB kernel (invisible at user level)

u  Backing store
l  Text segment uses executable binary file as backing storage
l  Other segments get backing storage on demand

u  Copy-on-write for forking processes

u  Multi-level paging
l  Directory, middle (nil for Pentium), page, offset
l  Kernel is pinned

u  Replacement
l  Keep certain number of pages free
l  Clock algorithm on paging cache and file buffer cache
l  Clock algorithm on unused shared pages
l  Modified Clock on memory of user processes

11

47

Address Space in Windows 2K/XP
u  Win2k user address space

l  Upper 2GB for kernel (shared)
l  Lower 2GB – 256MB are for user code and

data (Advanced server uses 3GB instead)
l  The 256MB contains system data (counters

and stats) for user to read
l  64KB guard at both ends

u  Virtual pages
l  Page size

•  4KB for x86
•  8 or 16KB for IA64

l  States
•  Free: not in use and cause a fault
•  Committed: mapped and in use
•  Reserved: not mapped but allocated

guard

guard

System data 2GB

4GB

0

Page table

48

 Backing Store in Windows 2K/XP

u  Backing store allocation
l  Win2k delays backing store page assignments until paging out
l  There are up to 16 paging files, each with an initial and max

sizes
u  Memory mapped files

l  Delayed write back
l  Multiple processes can share mapped files w/ different

accesses
l  Implement copy-on-write

49

Paging in Windows 2K/XP
u  Each process has a working set with

l  Min size with initial value of 20-50 pages
l  Max size with initial value of 45-345 pages

u  On a page fault
l  If working set < min, add a page to the working set
l  If working set > max, replace a page from the working set

u  If a process has a lot of paging activities, increase its max
u  Working set manager maintains a large number of free pages

l  In the order of process size and idle time
l  If working set < min, do nothing
l  Otherwise, page out the pages with highest “non-reference” counters in a

working set for uniprocessors
l  Page out the oldest pages in a working set for multiprocessors

51

Summary

u  VM paging
l  Page fault handler
l  What to page in
l  What to page out

u  LRU is good but difficult to implement
u  Clock (FIFO with 2nd hand) is considered a good

practical solution
u  Working set concept is important

