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Recall Address translation: Base and Bound
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+ Pros: Simple, fast, cheap, safe, can relocate
+ Cons:

« Can't keep program from accidentally overwriting its own code
« Can't share code/data with other processes
« Can't grow stack/heap as needed (stop program, change reg, ...)
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Virtual Memory Design Goals

+ Protection

¢ Virtualization
e Use disk to extend physical memory
e Make virtualized memory user friendly (0 to high address)

+ Enabling memory sharing (libraries, communication)

+ Efficiency
e Translation efficiency (TLB as cache)
e Access efficiency
* Access time = h - memory access time + ( 1 - h ) - disk access time
« E.g. Suppose memory access time = 100ns, disk access time = 10ms
* Ifh=90%, VM access time is 1ms!

¢ Portability
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Recall Address Translation: Segmentation
o
+ A segment is a contiguous region of virtual memory
¢ Every process has a segment table (in hardware)
e Entry in table oer segment
+ Segment can be located anywhere in physical memory
e Each segment has: start, length, access permission
¢ Processes can share segments
e Same start, length, same/different access permissions




Segmentation
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» Segments contiguous, but gaps in VM between them [ |saser
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» Segment table small, so stored on-CPU

Segmentation

+ Pros
e Can share code/data segments between processes
e Can protect code segment from being overwritten
e Can transparently grow stack/heap as needed
e Can detect if need to copy-on-write

+ Cons
e Complex memory mgmt: need to find chunk of particular size

e May need to rearrange memory from time to time to make room
for new segment or growing segment

+ External fragmentation: wasted space between chunks
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Segments Enable Copy-on-Write
o0
+ Idea of Copy-on-Write
e Child process inherits copy of parent’s address space on fork
e But don't really want to make a copy of all data upon fork

e Would like to share as far as possible and make own copy
only “on-demand”, i.e. upon a write

¢ Segments allow this to an extent
o Copy segment table into child, not entire address space
e Mark all parent and child segments read-only
e Start child process; return to parent
e If child or parent writes to a segment (e.g. stack, heap)

» Trap into kernel
« At this point, make a copy of the segment, and resume
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Recall Address Translation: Paging

¢ Manage memory in fixed size units, or pages
¢ Finding a free page is easy
e Effectively bitmap allocation: 0011111100000001100
e Each bit represents one physical page frame
¢ Every process has its own page table
e Stored in physical memory
e Hardware registers
« Pointer to page table start
» Page table length

+ Recall fancier structures: segmentation+paging, multi-level PT
e Better for sparse virtual address spaces
e E.g. per-processor heaps, per-thread stacks, memory mapped files,
dynamically linked libraries, ...
e Don't have fine-grain page table entries for “holes”




Multilevel Page Table
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Pinning (or Locking) Page Frames
o0

+ When do you need it?
e \When DMA is in progress, you don’t want to page the pages out
to avoid CPU from overwriting the pages
+ Mechanism?
e A data structure to remember all pinned pages

e Paging algorithm checks the data structure to decide on page
replacement

e Special calls to pin and unpin certain pages

Sharing and Copy on Write with Paging
o0

¢ Can we share memory between processes?
e Entries in both page tables to point to same page frames

e Need core map of page frames to track which / how many
processes are pointing to which page frames (e.g., reference
count), so know when a a page is still “live”

¢ UNIX fork with copy on write

Copy page table of parent into child process

Mark all pages (in new and old page tables) as read-only
Trap into kernel on write (in child or parent)

Copy page

Mark both as writeable
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o Resume execution

Zeroing Pages

+ Initilalize pages to all zero values
e Heap and static data are initialized

¢ How to implement?
e On the first page fault on a data page or stack page, zero it
e Or, have a special thread zeroing pages in the background




Shared Pages
o080
¢ PTEs from two processes share
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TLB and page table translation
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Efficient address translation
o000
¢ Recall translation lookaside buffer (TLB)
e Cache of recent virtual page -> physical page translations
e If cache hit, use translation
e If cache miss, walk (perhaps multi-level) page table
¢ Cost of translation =
Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB Performance
o000
+ What is the cost of a TLB miss on a modern processor?
e Cost of multi-level page table walk
e Software-controlled: plus cost of trap handler entry/exit
e Use additional caching principles: multi-level caching, etc
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Intel i7 Memory hierarchy
|
Cache Hit Cost Size
1st level cacheffirst level TLB ins  64KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns  2MB
Memory (DRAM) 100ns  10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100ps 100GB
Local disk 10ms 1TB
Data center disk 10ms 100PB
Remote data center disk 200 ms 1XB
i7 has 8MB as shared 3 level cache; 2™ level cache is per-core
Virtually vs. Physically Addressed Caches
00

+ It can be too slow to first access TLB to find physical
address, then look up address in the cache

¢ Instead, first level cache is virtually addressed

+ In parallel with cache lookup using virtual address,
access TLB to generate physical address in case of a
cache miss
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Problem with Translation Slowdown

¢ What is the cost of a first level TLB miss?
e Second level TLB lookup

¢ What is the cost of a second level TLB miss?
e x86: 2-4 level page table walk

+ Problem: Do we need to wait for the address translation
in order to look up the caches (for code and data)?

Virtually addressed caches
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Physically addressed cache
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+ On many systems, TLB entry can be
e A page
e A superpage: a set of contiguous pages

+ x86: superpage is a set of pages in one page table
e x86 TLB entries
. 4KB
+ 2MB
- 1GB
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When do TLBs work/not work?
o200
Video Frame Buffer
¢ Video Frame Paget
Buffer: 32 bits x 0
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When do TLBs Work/Not Work, Part 2
o0
+ What happens when the OS changes the permissions
on a page?
e For demand paging, copy on write, zero on reference, ...

¢ TLB may contain old translation
o OS must ask hardware to purge TLB entry

¢ On a multicore: TLB shootdown
o OS must ask each CPU to purge TLB entry

Aliasing
O |
+ Alias: two (or more) virtual cache entries that refer to the
same physical memory
e A consequence of a tagged virtually addressed cache!
e A write to one copy needs to update all copies

¢ Typical solution

e Keep both virtual and physical address for each entry in
virtually addressed cache

e Lookup virtually addressed cache and TLB in parallel

e Check if physical address from TLB matches multiple entries,
and update/invalidate other copies
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When do TLBs Work/Not Work, Part 3

¢ What happens on a context switch?
e Keep using TLB?
e Flush TLB?
+ Solution: Tagged TLB
e Each TLB entry has process ID
e TLB hit only if process ID matches current process
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TLB Consistency Issues
o0
+ “Snoopy” cache protocols (hardware)
e Maintain consistency with DRAM, even when DMA happens
¢+ Consistency between DRAM and TLBs (software)

e You need to flush related TLBs whenever changing a page
table entry in memory

o TLB “shoot-down”

o On multiprocessors/multicore, when you modify a page table
entry, need to flush all related TLB entries on all processors/
cores
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Summary

¢ Must consider many issues
e Global and local replacement strategies
e Management of backing store
e Primitive operations
» Pin/lock pages
» Zero pages
» Shared pages
» Copy-on-write
¢+ Real system designs are complex
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