COS 318: Operating Systems
o0

Virtual Memory Design Issues:
Address Translation

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Recall Address translation: Base and Bound

Processor’s View Implementation Physical
Memory
Virtual
Base
" Memory . Base
Virtual Virtual Physical
Address Address ~ Address
Processor |+t Processor @
.
Base+
Bouns
: Raise
))® ” Exception
+ Pros: Simple, fast, cheap, safe, can relocate
+ Cons:

« Can't keep program from accidentally overwriting its own code
« Can't share code/data with other processes
« Can't grow stack/heap as needed (stop program, change reg, ...)

b
5]

Virtual Memory Design Goals

+ Protection

¢ Virtualization
e Use disk to extend physical memory
e Make virtualized memory user friendly (0 to high address)

+ Enabling memory sharing (libraries, communication)

+ Efficiency
e Translation efficiency (TLB as cache)
e Access efficiency
* Access time = h - memory access time + (1 - h) - disk access time
« E.g. Suppose memory access time = 100ns, disk access time = 10ms
* Ifh=90%, VM access time is 1ms!

¢ Portability

B2
&

Recall Address Translation: Segmentation
o
+ A segment is a contiguous region of virtual memory
¢ Every process has a segment table (in hardware)
e Entry in table oer segment
+ Segment can be located anywhere in physical memory
e Each segment has: start, length, access permission
¢ Processes can share segments
e Same start, length, same/different access permissions

Segmentation

Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
. Processor| Base+
Virtual Bound 3
Address | Code , Virtual Segment Table
Processor|-- Address Base Bound Access
H —Base0
B | Segment‘ Offset | Read
T "W Code
Base+
R/W Bound 0
R/W
Heap
——Base1
oo
Physical Address | | 2%
A ysica. ress Base+
Szl ® Bound 1
Raise
)® > Exception
—|Base2
Heap
» Segments contiguous, but gaps in VM between them [|saser

Bound 2

» Segment table small, so stored on-CPU

Segmentation

+ Pros
e Can share code/data segments between processes
e Can protect code segment from being overwritten
e Can transparently grow stack/heap as needed
e Can detect if need to copy-on-write

+ Cons
e Complex memory mgmt: need to find chunk of particular size

e May need to rearrange memory from time to time to make room
for new segment or growing segment

+ External fragmentation: wasted space between chunks

=
e

Segments Enable Copy-on-Write
o0
+ Idea of Copy-on-Write
e Child process inherits copy of parent’s address space on fork
e But don't really want to make a copy of all data upon fork

e Would like to share as far as possible and make own copy
only “on-demand”, i.e. upon a write

¢ Segments allow this to an extent
o Copy segment table into child, not entire address space
e Mark all parent and child segments read-only
e Start child process; return to parent
e If child or parent writes to a segment (e.g. stack, heap)

» Trap into kernel
« At this point, make a copy of the segment, and resume

B2
&

Recall Address Translation: Paging

¢ Manage memory in fixed size units, or pages
¢ Finding a free page is easy
e Effectively bitmap allocation: 0011111100000001100
e Each bit represents one physical page frame
¢ Every process has its own page table
e Stored in physical memory
e Hardware registers
« Pointer to page table start
» Page table length

+ Recall fancier structures: segmentation+paging, multi-level PT
e Better for sparse virtual address spaces
e E.g. per-processor heaps, per-thread stacks, memory mapped files,
dynamically linked libraries, ...
e Don't have fine-grain page table entries for “holes”

Multilevel Page Table
O |
Implementation Physical
Memory
o[Index 1 IndexA;dreT:dexa offset_| — E
Pinning (or Locking) Page Frames
o0

+ When do you need it?
e \When DMA is in progress, you don’t want to page the pages out
to avoid CPU from overwriting the pages
+ Mechanism?
e A data structure to remember all pinned pages

e Paging algorithm checks the data structure to decide on page
replacement

e Special calls to pin and unpin certain pages

Sharing and Copy on Write with Paging
o0

¢ Can we share memory between processes?
e Entries in both page tables to point to same page frames

e Need core map of page frames to track which / how many
processes are pointing to which page frames (e.g., reference
count), so know when a a page is still “live”

¢ UNIX fork with copy on write

Copy page table of parent into child process

Mark all pages (in new and old page tables) as read-only
Trap into kernel on write (in child or parent)

Copy page

Mark both as writeable

[]
[)
[)
[]
[)
o Resume execution

Zeroing Pages

+ Initilalize pages to all zero values
e Heap and static data are initialized

¢ How to implement?
e On the first page fault on a data page or stack page, zero it
e Or, have a special thread zeroing pages in the background

Shared Pages
o080
¢ PTEs from two processes share
the same physical pages v] vp# | pp#
v vp#| pp#
e What use cases? A NN
+ Implementation issues :
)) v vp#| pp# AN
e What if you terminate a process D
i Page table
with shared pages S
e Paging in/out shared pages S
e Pinning, unpinning shared pages :|| ng} ggz_,—:}
e Deriving the working set for a . AN
process with shared pages 2
vL voi# _ppi Physical
Page table 2 pages
14
TLB and page table translation
o060
Virtual Virtual
Address Address .
Processor TLB | Miggeeweeesees Page |Invalid - , Raise

Data

Physical

Memory

Physical
Address

Data

:

T
s

Exception

Efficient address translation
o000
¢ Recall translation lookaside buffer (TLB)
e Cache of recent virtual page -> physical page translations
e If cache hit, use translation
e If cache miss, walk (perhaps multi-level) page table
¢ Cost of translation =
Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB Performance
o000
+ What is the cost of a TLB miss on a modern processor?
e Cost of multi-level page table walk
e Software-controlled: plus cost of trap handler entry/exit
e Use additional caching principles: multi-level caching, etc

Intel i7
Processor
Chip

| IntegratediMembry Contralies -3iCh DBR3)

Core0 Core 1 Core2 - Core3

L

Shared L3 Cache

Intel i7 Memory hierarchy
|
Cache Hit Cost Size
1st level cacheffirst level TLB ins 64KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100us 100TB
Local non-volatile memory 100ps 100GB
Local disk 10ms 1TB
Data center disk 10ms 100PB
Remote data center disk 200 ms 1XB
i7 has 8MB as shared 3 level cache; 2™ level cache is per-core
Virtually vs. Physically Addressed Caches
00

+ It can be too slow to first access TLB to find physical
address, then look up address in the cache

¢ Instead, first level cache is virtually addressed

+ In parallel with cache lookup using virtual address,
access TLB to generate physical address in case of a
cache miss

ok

Problem with Translation Slowdown

¢ What is the cost of a first level TLB miss?
e Second level TLB lookup

¢ What is the cost of a second level TLB miss?
e x86: 2-4 level page table walk

+ Problem: Do we need to wait for the address translation
in order to look up the caches (for code and data)?

Virtually addressed caches
o090
Virtual Virtual Virtual
Address . Address Address .
Processor . Virtual | i i TLB [Miss s Page |Invalid e Ralse.
Cache Exception
Table
Hit Hit
; ; Valid
D;ia Fr;me Fr;me
Offset ,i\ Physical
v
Physical Memory
Address
Data
v
Data
k3
i

Physically addressed cache

Virtual Virtual Virtual
Address Virtual Address Address Rai
Processor U g v o TLB | Miss e > Page |Invalid - > naise .
Cache Exception
Table
Hit Hit
; ; Valid
B v B
Data Frame Frame
Offset Physical Miss Physical
Physical Cache Physical Memory
Address Hit Address
Data H
3 v
Data Data
f'i
e

+ On many systems, TLB entry can be
e A page
e A superpage: a set of contiguous pages

+ x86: superpage is a set of pages in one page table
e x86 TLB entries
. 4KB
+ 2MB
- 1GB

)

When do TLBs work/not work?
o200
Video Frame Buffer
¢ Video Frame Paget
Buffer: 32 bits x 0
1K x 1K = 4MB ;
3
1021
1022
1023
Superpages
o200

Physical
Memory
Virtual
Address
Offset
Translation Lookaside Buffer (TLB)
Superpage Superframe
(SP) or (SF) or
Page# Frame Access Physical
@S f Address
Matching Entry §.>(D)-frs [Frame | offset |-,

Matching
T)@)_

Page Table > <
R -3

When do TLBs Work/Not Work, Part 2
o0
+ What happens when the OS changes the permissions
on a page?
e For demand paging, copy on write, zero on reference, ...

¢ TLB may contain old translation
o OS must ask hardware to purge TLB entry

¢ On a multicore: TLB shootdown
o OS must ask each CPU to purge TLB entry

Aliasing
O |
+ Alias: two (or more) virtual cache entries that refer to the
same physical memory
e A consequence of a tagged virtually addressed cache!
e A write to one copy needs to update all copies

¢ Typical solution

e Keep both virtual and physical address for each entry in
virtually addressed cache

e Lookup virtually addressed cache and TLB in parallel

e Check if physical address from TLB matches multiple entries,
and update/invalidate other copies

I
e

When do TLBs Work/Not Work, Part 3

¢ What happens on a context switch?
e Keep using TLB?
e Flush TLB?
+ Solution: Tagged TLB
e Each TLB entry has process ID
e TLB hit only if process ID matches current process

Implementation Physical
Memory

[
T nm

TLB Consistency Issues
o0
+ “Snoopy” cache protocols (hardware)
e Maintain consistency with DRAM, even when DMA happens
¢+ Consistency between DRAM and TLBs (software)

e You need to flush related TLBs whenever changing a page
table entry in memory

o TLB “shoot-down”

o On multiprocessors/multicore, when you modify a page table
entry, need to flush all related TLB entries on all processors/
cores

ﬁ& 29

Summary

¢ Must consider many issues
e Global and local replacement strategies
e Management of backing store
e Primitive operations
» Pin/lock pages
» Zero pages
» Shared pages
» Copy-on-write
¢+ Real system designs are complex

31

