COS 318: Operating Systems
o0
Message Passing

(http://www.cs.princeton.edu/courses/cos318/)

Sending A Message

Within A Computer Across A Network

P1 P2 7”””””7”7} 7777777777777777
S0l REE) Send() Recv()
\ Network -
S
OS Kernel 0S| cOS461 0s

P1 can send to P2, P2 can send to P1

o 3
e

Motivation
O |
+ Locks, semaphores, monitors are good but they only
work under the shared-address-space model
e Threads in the same process
e Processes that share an address space

+ How to synchronize / schedule / communicate among
processes that reside in different address spaces, and
even on different machines?

e Inter-process communication (IPC)

+ Can we have a single set of primitives that are
transparently extensible to the distributed environment ?

API Issues

Generic API

send(dest, msg), receive(src, msg)
o S
+ Destination or source

e Direct address:
node Id, process Id
e Indirect address: send(dest, msg)
mailbox, socket, R
channel, ...
+ Message (msg)
o Buffer (addr) and size > recv(src, msg)

o Message type, buffer
and size

Issues/options

Asynchronous vs. synchronous
Event handler vs. simple receive
How to match messages

How to buffer messages

Direct vs. indirect communication

* ¢ 6 o o o

How to handle exceptions (when bad things happen)?

Synchronous vs Asynchronous Receive
o0

+ Synchronous
e Return data if there is a
message
e Block on empty buffer

Msg transfer resource

recv(src, msg)

status = async_recv(src, msg);

Synchronous vs. Asynchronous Send

+ Synchronous
e Will not return until data is out
of its source memory
e If a buffer is used for
messaging and it is full, block
+ Asynchronous
e Return as soon as initiate status = async_send(dest, msg)
send, regardless of whether | .
data out of source memory if Isend_complete(status)
e Completion wait for completion;
* Applications must check status
* Notify or signal the application
e Block on full buffer

send(dest, msg

use msg data structure;

+ Asynchronous
e Return data if there is a
message
e Return status if there is no
message (probe)

I
e

if (status == SUCCESS)
consume msg;

while (probe(src) != HaveMSG)
wait for msg arrival

recv(src, msg);

consume msg;

Buffering

+ No buffering

e Sender must wait until the
receiver receives message

e Rendezvous on each msg

¢ Finite buffer
e Sender blocks on buffer full

Synchronous Send/Recv Within a System

o080
Synchronous send:

¢ Call send system call with M
+ Send system call:

e No buffer in kernel: block

e Copy M to kernel buffer
Synchronous recv:
+ Call recv system call
¢ Recv system call:

e No M in kernel: block

e Copy to user buffer
How to manage kernel buffer?

)

Indirect Addressing Example

Producer () { Consumer () {
while (1) {
produce item;
recv (prodMbox, &credit) T
send (consMbox, item) ;
}
}

for (i=0; i<N; i++)
send (prodMbox, credit);
while (1) {
<. recv(consMbox, &item) ;
™~ send (prodMbox, credit);
consume item;
}
}

¢ Would it work with multiple producers and 1 consumer?
+ Would it work with 1 producer and multiple consumers?
¢ What about multiple producers and multiple consumers?

Direct Addressing Example
N

Producer () { Consumer () {
while (1) {
produce item;
recv (Consumer, &credit) ;< |
send (Consumer, item); ~~——— recv(Producer, &item);
} ™~ send (Producer, credit);
consume item;
}
}

for (i=0; i<N; i++)
| — send (Producer, credit);
while (1) {

}

¢ Does this work?

¢ Would it work with multiple producers and 1 consumer?
+ Would it work with 1 producer and multiple consumers?
¢ What about multiple producers and multiple consumers?

e

10

Indirect Communication

+ Names
e mailbox, socket, channel, ...
¢ Properties
e Some allow one-to-one
(e.g. pipe)
e Some allow many-to-one or

one-to-many communications
(e.g. mailbox)

mbox

pipe

Mailbox Message Passing

¢ Message-oriented 1-way communication
¢ Data structure
e Mutex, condition variable, buffer for messages
+ Operations
e Init, open, close, send, receive, ...
+ Does the sender know when receiver gets a message?

mbox_send(M) —— > mbox_recv(M)

Sockets

+ Sockets

Bidirectional (unlike mailbox) send |, socket | send/
Unix domain sockets (IPC) frecy ey
Network sockets (over network)
Same APIs

¢ Two types

e Datagram Socket (UDP)
« Collection of messages le socket

 Best effort
« Connectionless
e Stream Socket (TCP)

« Stream of bytes (like pipe)
* Reliable

« Connection-oriented
a@;ﬁ\ 15
BN

Kernel

Example: Keyboard Input

¢ Interrupt handler
e Get the input characters and give to device thread
+ Device thread
e Generate a message and send it to mailbox of an input process

while (1) {
P(s);

T @) Acquire (m) ;
[afaeaalaanafaanasas) (s): —— convert .. getchar ()
sl

}i mbox

Interrupt Device
handler thread

Network Socket Address Binding

o0
¢ A network socket binds to
¢ Host: IP address
+ Protocol: UDP/TCP
¢ Port: ports
e potocos
+ Unused ports available for [128.112.9.1] | address

clients (1025..65535)
+ Why ports?
* Indirection: No need to know which

process to communicate with

» Updating software on one side
wont affect another side

ﬁ@ 16

Communication with Stream Sockets

Client Server

Create a socket

Connect to server

Send request

Unix pipes

¢ An output stream connected to an input stream by a
chunk of memory (a queue of bytes).

+ Send (called write) is non-blocking
+ Receive (called read) is blocking

¢ Buffering is provided by OS

I
e

Sockets API

+ Create and close a socket

e sockid = socket(af, type, protocol);

e sockerr = close(sockid);
+ Bind a socket to a local address

e sockerr = bind(sockid, localaddr, addrlength);
¢ Negotiate the connection

e listen(sockid, length);

e accept(sockid, addr, length);
+ Connect a socket to destimation

e connect(sockid, destaddr, addrlength);
+ Message passing

e send(sockid, buf, size, flags);

@ e recv(sockid, buf, size, flags);

Message-Passing Implementation Issues

+ R waits for a message from S,
but S has terminated

e R may be blocked forever

+ S sends a message to R,
but R has terminated

e S has no buffer and will be S
blocked forever

20

Exception: Message Loss Exception: Message Loss, contd.

o0 o0
¢ Use ack and timeout to detect ¢ Retransmission must handle
and retransmit a lost message e Duplicate messages on receiver side
e Receiver sends an ack for each msg ¢ Out-of-sequence ack messages on
e Sender blocks until an ack message send sender side send,
is back or timeout S ack [R ¢ Retransmission
status = send(dest, msg, timeout); e Use sequence number for each ack,
e If timeout happens and no ack, then message fo identify duplicates S | send,|] R
retransmit the message e Remove duplicates on receiver side ack,
e Sender retransmits on an out-of-
¢ Issues

sequence ack
¢ Reduce ack messages
e Bundle ack messages
e Piggy-back acks in send messages

e Duplicates
e Losing ack messages

21

22

Exception: Message Corruption Message Passing Interface (MPI)
o0 O
+ A message-passing library for parallel machines
‘ Data ICRC‘ o Implemented at user-level for high-performance computing
e Portable
Compute ghecksum + Basic (6 functions)

o Detection e Works for most parallel programs

e Compute a checksum over the entire message and send # Large (125 functions)

the checksum (e.g. CRC code) as part of the message

e Recompute a checksum on receive and compare with the
checksum in the message

¢ Correction
e Trigger retransmission
e Use correction codes to recover

23 ﬁ@@ 24

e Blocking (or synchronous) message passing
o Non-blocking (or asynchronous) message passing
e Collective communication
¢+ References
e http://www.mpi-forum.org/

Remote Procedure Call (RPC)

¢ Make remote procedure calls
e Similar to local procedure calls
e Examples: SunRPC, Java RMI
¢ Restrictions
e Call by value
e Call by object reference (maintain consistency)
e Not call by reference
+ Different from mailbox, socket or MPI
o Remote execution, not just data transfer
¢ References
e B. J. Nelson, Remote Procedure Call, PhD Dissertation, 1981

e A.D. Birrell and B. J. Nelson, Implementing Remote
@ Procedure Calls, ACM Trans. on Computer Systems, 1984

25

RPC Mechanism

Client program Server program

’ Return ‘ Call ‘

‘ Call ‘ Return ‘
| - ——
| Client | Decode | Encode/ | i ! Server | Decode | Encode/
i stub |unmarshall| marshall | | i stub [unmarshall| marshall
\) T S A I
| | | |
] v 5 / 7 ‘
RP(? ’ Receive l Send ‘ ERP(.: ‘ Receive I Send ‘
runtime 4 i : : runtime :

/ N A
\ch'ent/d| RPCId | Call | Args }/

@F 27

RPC Model

Caller (Client) Server

Reque
RPC call inch St message

%

Function execution

NncCl u r r W/ paSS d arqu
R ")&ng a etu n Va’ue g

, I e
(Same as

local calls)

Compile time type checking and interface generation

26

Summary

¢ Message passing
o Move data between processes
e Implicit synchronization
e Many API design alternatives (Socket, MPI)
e Indirection is helpful
¢ RPC
o Remote execution like local procedure calls
e With constraints in terms of passing data
+ Implementation and Semantics
e Synchronous method is most common

e Asynchronous method provides overlapping, but required
careful design and implementation decisions

e Indirection makes implementation flexible

e Exception needs to be carefully handled 28

Appendix:
Message Passing Interface (MPI)

29

Blocking Send
O |
+ MPI_Send(buf, count, datatype, dest, tag, comm)
e buf address of send buffer
count # of elements in buffer
e datatype data type of each send buffer element
e dest rank of destination
e tag message tag
e comm communicator
< This routine may block until the message is received by
the destination process
e Depending on implementation
e But will block until the user source buffer is reusable

¢ More about message tag later

*@% 3
e

Hello World using MPI

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])

{ Initialize MP| Return

int rank, size; environmep”. my rank
MPI_Init(&argc, &argv); ZAN

MPI Comm_ rank(MPI_COMM WORLD, &rank);
MPI_Comm size(MPI_COMM WORLD, &size);
printf("I am %d of %d\n", rank, ;

MPI_Finalize() :
return 0; Last call to
} clean up

Return # of
processes

30

Blocking Receive
o
+ MPI_Recv(buf, count, datatype, source, tag, comm,
status)
e buf address of receive buffer (output)
count maximum # of elements in receive buffer
datatype datatype of each receive buffer element
source rank of source
tag message tag
comm communicator
e status status object (output)
¢ Receive a message with the specified tag from the
specified comm and specified source process
¢ MPI_Get_count(status, datatype, count) returns the real
count of the received data

32

More on Send & Recv
o000
i Comm =X
MPI_Send(..., 1EE =0
dest=1, tag=1, comm=X...) Tag =
;j::::::::::::f\ MPI_Recv(...,
| |Tag = ... Source=0,tag=1,comm=X...)
+ Can send from source to destination directly
¢ Message passing must match
e Source rank (can be MPI_ANY_SOURCE)
e Tag (can be MPI_ANY_TAGQG)
e Comm (can be MPI_COMM_WORLD)
@? 33
Non-Blocking Send
00
+ MPI_Isend(buf, count, datatype,
dest, tag, comm, *request) MP_Isend(...)
e request is a handle, used by other
calls below
+ Return as soon as possible MPI_Wait(...)
e Unsafe to use buf right away
¢ MPI_Wait(*request, *status) MPI_lIsend(...)

*

e Block until send is done
Work to do
MPI_Test(*request, *flag,*status)
e Return the status without blocking ~ MPI_Test(..., flag,...);
while (flag == FALSE) {

More work

}
a@w 35
]

Buffered Send

o000
+ MPI_Bsend(buf, count, datatype, dest, tag,
comm)
e buf address of send buffer
e count # of elements in buffer MPI_Bsend(buf, ...)

e Datatype type of each send element
o dest rank of destination
e tag message tag
e comm communicator
¢ May buffer; user can use the user send Created b
; Yy
buffer right away MPI_Buffer_attach()
¢ MPI_Buffer_attach(), MPI_Buffer_detach
creates and destroy the buffer

¢ MPI_Ssend: Returns only when matching
receive posted. No buffer needed.
¢ MPI_Rsend: assumes received posted
@ already (programmer’s responsibility)
34

Non-Blocking Recv

+ MPI_Irecv(buf, count, datatype,
dest, tag, comm, *request, ierr) ~ MPI_Irecv(...)

¢ Return right away

+ MPI_Wait() MPLWait(...
e Block until finishing receive

+ MPI_Test()
o Return status MPI_Probe(...)

+ MPI_Probe(source, tag, comm, while (flag == FALSE) {

flag, status, ierror) More work
e |s there a matching message? }
MPI_Irecyv(...)
or MPI_recv(...)

9. %
w0

1

