EXERCISE 1: Seam Carving

Consider the given 3x4 image and the corresponding energies matrix.

- A *Vertical Seam* is a path of pixels connected from the top row to the bottom row, where a pixel at row x and column y can only be connected to the pixels (x-1,y+1), (x,y+1) and (x+1,y+1).
- *The Seam Energy* is the sum of the energies of the pixels in the seam.
- *A Minimum Energy Vertical Seam* is the vertical seam with the minimum energy.

_					
	(15,10,16)	(31,15,19)	(15,10,3)	32	72
	(5,18,0)	(80,18,0)	(120,100,80)	123	163
	(35,20,12)	(36,17,13)	(15,10,3)	32	75
	(5,1,13)	(13,1,16)	(120,110,40)	156	161

RGB Values of the 3x4 Image

Energy Values (Rounded)

45

75

41

9

A. Mark the minimum energy vertical seam in the given energies matrix. What is the energy of this seam?

EXERCISE 2: Dorm Room and Routers (Design Question)

There are N rooms, each of which needs an internet connection. A room i has internet access if either of the following is true:

- There is a router installed in room *i* (this costs $r_i > 0$).
- The room *i* is connected by some fiber path to another room *j* which itself has internet access (putting down fiber between room *i* and *j* costs $f_{ij} > 0$).

The goal of this problem is to determine in which rooms to install a router, and in which pair of rooms to connect together with fiber, so as to minimize the total cost.

Formulate the problem as a *minimum spanning tree* problem, given a graph G = (V, E) with vertices $V = \{v_1, \ldots, v_n\}$ and the previously mentioned costs, r_i and f_{ij} . You may use the above example to test your formulation.

For example, this instance contains 7 dorm rooms and 10 possible connections. The router installation costs are indicated in bold and parentheses; the fiber costs are given on the edges. The optimal solution, which costs 120, installs a router in rooms 1 and 4 (for a cost of 10 + 40) and builds the shown fiber connections.

EXERCISE 3: (Optional)

For each of the following statements, argue for why it is true or provide a counterexample if it is false. **A.** *Incrementing* all the weights of edges in a graph by the same constant does not affect the *shortest path*.

B. *Incrementing* all the weights of edges in a graph by the same constant does not affect the *minimum spanning tree*.

C. *Multiplying* all the weights of edges in a graph by the same positive constant does not affect the shortest path.