

COS226 Precept Exercises: Week 5 Fall ‘18

EXERCISE 1: Kd-Trees

(a) Draw the Kd-tree that results from inserting the following points:

[A(2, 3), B(4, 2), C(4, 5), D(3, 3), E(1, 5), F(4, 4), G(1, 1)]

Draw each point on the grid, as well as the vertical or horizontal line that runs through the point
and partitions the plane, or a subregion of it.

Note: While inserting, go left if the coordinate of the inserted point is less than the coordinate of
the current node. Go right if it is greater than or equal.

(b) Give each point’s bounding rectangle.

A(2, 3) (− ,), (+ ,)][∞ − ∞ ∞ + ∞

B(4, 2)

C(4, 5)

D(3, 3)

F(4, 4) (4, 2), (+ ,)][∞ + ∞

E(1, 5) (− ,), (2,)][∞ − ∞ + ∞

G(1, 1)

(c) Number the tree nodes according to the visiting order when performing a range query using the

rectangle shown below. Label pruned subtrees with X.

Remember. The range search algorithm recursively searches in both the left and right subtrees
unless the bounding rectangle of the current node does not intersect the query rectangle.

(d) Number the tree nodes according to the visiting order when performing a nearest neighbor (NN)

query using the point shown below. Label pruned subtrees with X.p

Remember. The NN algorithm recursively searches in both the left and right subtrees unless the
distance between p and the bounding rectangle of the current node is larger than the distance
between p and the nearest point found so far.

EXERCISE 2: Ordered BST Operations

(a) Download precept5.zip from the precepts page. Unzip the file and open the project using
IntelliJ.

(b) Implement int rank(Key key) in BST.java . This method should return the number of keys in

the BST that are strictly less than the given key.

(c) Implement int countRange(Key lo, Key hi) . This method should return the number of
keys in the BST that are between lo and hi (inclusive).

