EXERCISE 1: Knuth-Morris-Pratt

Construct the Knuth-Morris-Pratt DFA for the string PAPAYA over the alphabet $\{A, P, Y\}$. Complete the transition diagram and the corresponding DFA table.

	0	1	2	3	4	5
Α						
Р						
Υ						

EXERCISE 2: Boyer-Moore

Suppose that you run the Boyer-Moore algorithm (the basic version considered in the textbook and lecture) to search for the pattern D N A A in the text X N A A D N A A D N A A. Give the trace of the algorithm in the grid below, circling the characters in the pattern that get compared with characters in the text.

Χ	N	А	А	А	D	N	А	А

EXERCISE 3: Algorithm & Data Structure Design

Given a string txt of length N, design a data structure that allows to search in txt for a given string s of length $m \ll N$ in txt. The length m is unknown in advance and is not fixed over different queries.

Performance Requirements. The running time of each search query should be in the order of m in the worst-case. The data structure can use up to N^2R space and can take up to N^2R time to construct, where R is the size of the alphabet, which is known in advance.