¥ C0S226 Precept Exercises: Week 10 Fall 18

EXERCISE 1: Compression Warm-up
A. The compression ratio is defined as: compressed size / original size . Consider a sequence of N
characters, 8-bits each, what is the compression ratio achieved by Huffman coding in:

o the best case?

o the worst case?

B. Move-To-Front is a lossless encoding algorithm that works as follows:

Maintain an ordered sequence of the characters in the alphabet by repeatedly reading a character from
the input message; printing the position in the sequence in which that character appears; and moving
that character to the front of the sequence.

Example. Input: BCC
Output: 120
B is 1 C is 2 C is 0
ABCDEF ——»BACDEF ——>» CBADEF —3 CBADEF
012345 12345 012345 012345

Move-To-Front encoding is typically used to convert a given text into one where some characters appear
much more frequently than others.

o Give an example (using the ABCDEF alphabet) where Move-To-Front works best
(low variability — high variability).

o Give an example (using the ABCDEF alphabet) where Move-To-Front does not work well (low
variability — low variability)

C. The goal of the Burrows-Wheeler lossless transform is to convert a given text into text where sequences
of the same character occur near each other many times.

How should Move-To-Front, Huffman and Burrows-Wheeler be used together in order to achieve a good
compression ratio?

EXERCISE 2: Burrows-Wheeler Transform

A. List the circular suffixes of the word “W E E KE N D" and then sort them in lexicographical order.

Original Sorted
© [WEEKEND

T|EEKENDW

B. The Burrows-Wheeler transform is the last character of each each of the sorted circular suffixes,
preceded by the row number in which the original string ends up when considered in sorted order.

What is the Burrows-Wheeler Transform of “W E E KE N D"?

C. How much memory is needed to store the circular suffixes?

EXERCISE 3: Burrows-Wheeler Inverse-Transform

A. Given only the last character of each of the circular suffixes when considered in sorted order, can we
infer the first character in each of these suffixes? Explain your answer.

? - - - - - N
? - - - - - W
? - - - - - E
? - - - - - K
? - - - - - E
? - - - - - E

B. We know from Exercise 2.B that the Burrows-Wheeler transform stores where the original string is.
The goal of the inverse-transform is to find the characters of the original string, i.e. the characters

between Wand D in row 6.

s[] t[]
0| D - - - - - N
1 E-- - - - W
2| E - - - - - E
3 E- - - - - K
4l K = - - - - E
5| N - - - - - E
6] W- - - - - D *

Observation. The character that follows W, is the first character in the circular suffix that follows row 6 in
the original circular suffixes array! Convince the person sitting beside you!

Use the following (very slow) algorithm to construct the array next[] to keep track of where the next

circular suffix is for each of the sorted circular suffixes.

for (int 1 = 0; i < N; i++)
for (int j = 0; j < N; j++) {
if (used[j]) continue;
if (s[i] == t[j]) {

used[j] = true; //disallow reuse of this character
next[i] = j;
}
}
Original S[] t[] next|[]
O | WEEKEND e(D - - - - - N 6
T |EEKENDW 11 - - - - - W
2 |[EKENDWE 2|E - - - - - E
3 |KENDWEFTE 3|E - - - - - K
4 [ENDWEEHK 4 (K - - - - - E
5 NDWETEKTE 5IN-- - - - E
6 |IDWEEKEN 6(W---- - D

C. Trace the array next[] starting at row 6 to reconstruct the original string.

