
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 12/5/18 9:10 AM

5.3  SUBSTRING SEARCH

‣ introduction 

‣ brute force 

‣ Knuth–Morris–Pratt 

‣ Boyer–Moore

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ brute force 

‣ Knuth–Morris–Pratt 

‣ Boyer–Moore

5.3  SUBSTRING SEARCH

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


 3

Substring search

Goal.  Find pattern of length m in a text of length n.

typically n ≫ m

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text



 4

Substring search applications

Goal.  Find pattern of length m in a text of length n.

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text

typically n ≫ m



 5

Substring search applications

Goal.  Find pattern of length m in a text of length n. 

Computer forensics.  Search memory or disk for signatures,  
e.g., all URLs or RSA keys that the user has entered.

http://citp.princeton.edu/memory

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text

typically n ≫ m



 6

Substring search applications

Goal.  Find pattern of length m in a text of length n. 

Identify patterns indicative of spam.  

独 PROFITS   

独 L0SE WE1GHT  

独 herbal Viagra  

独 There is no catch.   

独 This is a one-time mailing.   

独 This message is sent in compliance with spam regulations. 

Substring search 

N  E  E  D  L  E

I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A

match

pattern

text

typically n ≫ m



 7

Substring search applications

Web scraping.  Extract relevant data from web page. 

 
Ex.  Find string delimited by <b> and </b> after first occurrence of  
pattern Last Trade:.

... 
<tr> 
<td class= "yfnc_tablehead1" 
width= "48%"> 
Last Trade: 
</td> 
<td class= "yfnc_tabledata1"> 
<big><b>582.93</b></big> 
</td></tr> 
<td class= "yfnc_tablehead1" 
width= "48%"> 
Trade Time: 
</td> 
<td class= "yfnc_tabledata1"> 
...

raw HTML

http://finance.yahoo.com/q?s=goog

as rendered by browser



 8

Web scraping:  Java implementation

Java library.  The indexOf() method in Java’s String data type returns the 

index of the first occurrence of a given string, starting at a given offset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Caveat.  Must update program whenever Yahoo format changes.

public class StockQuote  
{  
   public static void main(String[] args) 
   { 
      String name = "http://finance.yahoo.com/q?s="; 
      In in = new In(name + args[0]); 
      String text = in.readAll(); 
      int start    = text.indexOf("Last Trade:", 0); 
      int from     = text.indexOf("<b>",  start); 
      int to       = text.indexOf("</b>", from); 
      String price = text.substring(from + 3, to); 
      StdOut.println(price); 
   }  
}

% java StockQuote goog 
582.93



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ brute force 

‣ Knuth–Morris–Pratt 

‣ Boyer–Moore

5.3  SUBSTRING SEARCH

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


Check for pattern starting at each text position.

 10

Brute-force substring search

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is m

entries in red are
mismatches

txt

pat

match

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is m

entries in red are
mismatches

txt

pat

match

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is m

entries in red are
mismatches

txt

pat

match



Check for pattern starting at each text position.

public static int search(String pat, String txt) 
{ 
   int m = pat.length(); 
   int n = txt.length(); 
   for (int i = 0; i <= n - m; i++) 
   { 
      int j; 
      for (j = 0; j < m; j++) 
         if (txt.charAt(i+j) != pat.charAt(j))  
            break; 
      if (j == m) return i; 
   } 
   return n; 
}

 11

Brute-force substring search:  Java implementation

index in text where 
pattern starts

not found

i   j  i + j   0  1  2  3  4  5  6  7  8  9  1 0  

          A  B  A  C  A  D  A  B  R  A  C  
⋮  

4   3   7            A  D  A  C  R  

5   0   5              A  D  A  C  R

number of characters that match

for each 

possible offset



What is the worst-case running time of brute-force substring search 
as a function of the pattern length m and text length n ? 

A.  m + n

B.  m 2

C.  m n

D.  n 2

Substring search:  quiz 1

Brute-force substring search (worst case)

 i   j  i+j   0  1  2  3  4  5  6  7  8  9

              A  A  A  A  A  A  A  A  A  B 

 0   4   4    A  A  A  A  B 
 1   4   5       A  A  A  A  B 
 2   4   6          A  A  A  A  B 
 3   4   7             A  A  A  A  B 
 4   4   8                A  A  A  A  B 
 5   5  10                   A  A  A  A  B

   

txt

pat

Brute-force substring search

 i   j  i+j  0  1  2  3  4  5  6  7  8  9 10

             A  B  A  C  A  D  A  B  R  A  C 

 0   2   2   A  B  R  A 
 1   0   1      A  B  R  A 
 2   1   3         A  B  R  A 
 3   0   3            A  B  R  A 
 4   1   5               A  B  R  A 
 5   0   5                  A  B  R  A 
 6   4  10                     A  B  R  A 

   

entries in gray are
for reference only

entries in black
match the text

return i when j is M

entries in red are
mismatches

txt

pat

match



 13

Algorithmic challenges in substring search

Fundamental algorithmic challenge.  Linear-time guarantee.

Now is the time for all people to come to the aid of their party. Now is the time for 
all good people to come to the aid of their party. Now is the time for many good people 
to come to the aid of their party. Now is the time for all good people to come to the 
aid of their party. Now is the time for a lot of good people to come to the aid of 
their party. Now is the time for all of the good people to come to the aid of their 
party. Now is the time for all good people to come to the aid of their party. Now is 
the time for each good person to come to the aid of their party. Now is the time for 
all good people to come to the aid of their party. Now is the time for all good 
Republicans to come to the aid of their party. Now is the time for all good people to 
come to the aid of their party. Now is the time for many or all good people to come to 
the aid of their party. Now is the time for all good people to come to the aid of their 
party. Now is the time for all good Democrats to come to the aid of their party. Now is 
the time for all people to come to the aid of their party. Now is the time for all good 
people to come to the aid of their party. Now is the time for many good people to come 
to the aid of their party. Now is the time for all good people to come to the aid of 
their party. Now is the time for a lot of good people to come to the aid of their 
party. Now is the time for all of the good people to come to the aid of their party. 
Now is the time for all good people to come to the aid of their attack at dawn party. 
Now is the time for each person to come to the aid of their party. Now is the time for 
all good people to come to the aid of their party. Now is the time for all good 
Republicans to come to the aid of their party. Now is the time for all good people to 
come to the aid of their party. Now is the time for many or all good people to come to 
the aid of their party. Now is the time for all good people to come to the aid of their 
party. Now is the time for all good Democrats to come to the aid of their party.



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ brute force 

‣ Knuth–Morris–Pratt 

‣ Boyer–Moore

5.3  SUBSTRING SEARCH

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


Knuth–Morris–Pratt substring search

Intuition.  Suppose we are searching in text for pattern B A A A A A A A A A . 

独Suppose we match 5 chars in pattern, with mismatch on 6th char.

 15

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text



Knuth–Morris–Pratt substring search

Intuition.  Suppose we are searching in text for pattern B A A A A A A A A A . 

独Suppose we match 5 chars in pattern, with mismatch on 6th char. 

独We know previous 6 chars in text must be B A A A A B . 

独Don’t need to compare any text character twice. 

 
 
 
 
 
 
 
 
 
Knuth–Morris–Pratt algorithm.  Clever method to always avoid comparing  
a text character more than once!

 16

assuming { A, B } alphabet

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A  B  A  A  A  A  B  A  A  A  A  A  A  A  A  A 

   B  A  A  A  A  A  A  A  A  A
      B  A  A  A  A  A  A  A  A  A 
         B  A  A  A  A  A  A  A  A  A 
            B  A  A  A  A  A  A  A  A  A 
               B  A  A  A  A  A  A  A  A  A 
                  B  A  A  A  A  A  A  A  A  A

                  B  A  A  A  A  A  A  A  A  A

   

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text



DFA is abstract string-searching machine. 

独Finite number of states (including start and halt). 

独Exactly one state transition for each char in alphabet. 

独Accept if sequence of state transitions leads to halt state.

Deterministic finite state automaton (DFA)

 17

graphical representation

Constructing the DFA for KMP substring search for A  B  A  B  A  C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

     0   1   2   3   4   5
     A   B   A   B   A   C
     1   1   3   1   5   1
     0   2   0   4   0   4
     0   0   0   0   0   6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

internal representation

If in state j reading char c: 
      if j is 6 halt and accept 

else move to state dfa[c][j]

10 32 4 65B

A

C

BA A CA

B

A

B, C

B, C

B, C

A

C



Knuth–Morris–Pratt demo:  DFA simulation

 18

1 1 3 1 5 1

0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A

B

C

A  A  B  A  C  A  A  B  A  B  A  C  A  A

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]



Q.  What is interpretation of DFA state after reading in txt[i]? 

A.  State = number of characters in pattern that have been matched. 

 
 
Ex.  DFA is in state 3 after reading in txt[0..6].

Interpretation of Knuth–Morris–Pratt DFA

 19

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

0  1  2  3  4  5  6  7  8  
B  C  B  A  A  B  A  C  Atxt

0  1  2  3  4  5  
A  B  A  B  A  Cpat

i

suffix of txt[0..6] prefix of pat[]

length of longest prefix of pat[] 

that is a suffix of txt[0..i]

ABA ABAB ABABA ABABACABA



Which state is the DFA in after processing the following input?  
 

A.  0

B.  1

C.  3

D.  4

Substring search:  quiz 2

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

B A A B A B A B

length of longest prefix of pat[] 

that is a suffix of txt[0..7]

ABA ABAB ABABA ABABACABA



Which state is the DFA in after processing the following input?  
 

A.  0

B.  1

C.  3

D.  4

E.  5

Substring search:  quiz 3

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

A B A A B B A B A B B A B A A B A A B A A A B A B A B A A B A A B A A B A B A B

assuming no match, 

suffices to look 

at last 6 characters

ABA ABAB ABABA ABABACABA

length of longest prefix of pat[] 

that is a suffix of txt[0..79]



Knuth–Morris–Pratt substring search:  Java implementation

Key differences from brute-force implementation. 

独Need to precompute dfa[][] from pattern. 

独Each text character compared (at most) once. 

 
 
 
 
 
 
 
 
 
 
Running time. 

独Simulate DFA on text:  at most n character accesses. 

独Build DFA:  how to do efficiently?  [warning: tricky algorithm ahead]

 22

public int search(String txt) 
{ 
   int i, j, n = txt.length();  
   for (i = 0, j = 0; i < n && j < m; i++)  
      j = dfa[txt.charAt(i)][j];  
   if (j == m) return i - m;  
   else        return n;  
}

stop on first match



Knuth–Morris–Pratt demo:  DFA construction

 23

1 1 3 1 5 1

0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A

B

C

Constructing the DFA for KMP substring search for  A B A B A C

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]



Include one state for each character in pattern (plus accept state).

How to build DFA from pattern?

 24

10 32 4 65

A B A B A C

0 1 2 3 4 5

pat.charAt(j)

A

B

C

dfa[][j]

ABA ABAB ABABA ABABACABA



Match transition.  If in state j and next char c == pat.charAt(j), go to j+1.

How to build DFA from pattern?

 25

10 32 4 65BA BA CA

1 3 5

2 4

6

A B A B A C

0 1 2 3 4 5

pat.charAt(j)

A

B

C

dfa[][j]

first j characters of pattern 

have already been matched

now first j +1 characters of 
pattern have been matched

next char matches

ABA ABAB ABABA ABABACABA



Mismatch transition.  If in state j and next char c != pat.charAt(j),  
then the last j-1 characters of input are pat[1..j-1], followed by c. 

 
To compute dfa[c][j]:  Simulate pat[1..j-1] on DFA and take transition c. 

Running time.  Seems to require j steps.

How to build DFA from pattern?

 26

simulate BABAA

still under construction (!)

10 32 4 65BA A CA

B

A

B, C

B, C

B, C

C

A

C

Bpat.charAt(j) BA

2 5

A

0 1 3 4

CA

j

j

3 B

A

B

A

simulation 

of BABA

Ex.  dfa['A'][5] = 1 dfa['B'][5] = 4

simulate BABAB



Mismatch transition.  If in state j and next char c != pat.charAt(j),  
then the last j-1 characters of input are pat[1..j-1], followed by c. 

To compute dfa[c][j]:  Simulate pat[1..j-1] on DFA and take transition c. 

Running time.  Takes only constant time if we maintain state x. 

How to build DFA from pattern?

 27

state x

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

j

B BA

2 5

A

0 1 3 4

CA

x

B

A

from state x,

take transition 'A'

= dfa['A'][x]

from state x,

take transition 'B'

= dfa['B'][x]

from state x,

take transition 'C'

= dfa['C'][x]

Ex.  dfa['A'][5] = 1 dfa['B'][5] = 4 x' = 0



Knuth–Morris–Pratt demo:  DFA construction in linear time

 28

1 1 3 1 5 1

0 2 0 4 0 4

0 0 0 0 0 6

A B A B A C

0 1 2 3 4 5

A

B

C

Constructing the DFA for KMP substring search for  A B A B A C

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]



For each state j: 

独Copy dfa[][x] to dfa[][j] for mismatch case. 

独Set dfa[pat.charAt(j)][j] to j+1 for match case. 

独Update x. 

 
 
 
 
 
 
 
 
 
 
 
Running time.  m character accesses (but space/time proportional to R m).

public KMP(String pat)  
{    
   this.pat = pat;  
   m = pat.length();  
   dfa = new int[R][m];  
   dfa[pat.charAt(0)][0] = 1;  
   for (int x = 0, j = 1; j < m; j++)  
   {  
      for (int c = 0; c < R; c++)  
         dfa[c][j] = dfa[c][x]; 
      dfa[pat.charAt(j)][j] = j+1;  
      x = dfa[pat.charAt(j)][x];  
   }  
}

Constructing the DFA for KMP substring search:  Java implementation

 29

copy mismatch cases

set match case

update restart state



Proposition.  KMP substring search accesses no more than m + n chars  
to search for a pattern of length m in a text of length n. 

  
Pf.  Each pattern character accessed once when constructing the DFA; 
each text character accessed (at most) once when simulating the DFA. 

 
 
Proposition.  KMP constructs dfa[][] in time and space proportional to R m. 

 
Larger alphabets.  Improved version of KMP constructs nfa[] in time and 

space proportional to m.

 30

KMP substring search analysis

NFA corresponding to the string A  B  A  B  A  C 

0 1 2 3 4 5 6A B A A C

     0   1   2   3   4   5
     A   B   A   B   A   C
     0   0   0   0   0   3
       

next[j]
pat.charAt(j)

j

graphical representation

internal representation

mismatch transition
(back up at least one state)

B

KMP NFA for ABABAC



 31

Knuth–Morris–Pratt:  brief history

独Independently discovered by two theoreticians and a hacker. 

– Knuth:  inspired by esoteric theorem, discovered linear algorithm 

– Pratt:  made running time independent of alphabet size 

– Morris:  built a text editor for the CDC 6400 computer 

独Theory meets practice.

Don Knuth Vaughan PrattJim Morris

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHf, JAMES H. MORRIS, JR.:l: AND VAUGHAN R. PRATT

Abstract. An algorithm is presented which finds all occurrences of one. given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {can}*, can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.

Key words, pattern, string, text-editing, pattern-matching, trie memory, searching, period of a
string, palindrome, optimum algorithm, Fibonacci string, regular expression

Text-editing programs are often required to search through a string of
characters looking for instances of a given "pattern" string; we wish to find all
positions, or perhaps only the leftmost position, in which the pattern occurs as a
contiguous substring of the text. For example, c a e n a r y contains the pattern
e n, but we do not regard c a n a r y as a substring.

The obvious way to search for a matching pattern is to try searching at every
starting position of the text, abandoning the search as soon as an incorrect
character is found. But this approach can be very inefficient, for example when we
are looking for an occurrence of aaaaaaab in aaaaaaaaaaaaaab.
When the pattern is a"b and the text is a2"b, we will find ourselves making (n + 1)
comparisons of characters. Furthermore, the traditional approach involves
"backing up" the input text as we go through it, and this can add annoying
complications when we consider the buffering operations that are frequently
involved.

In this paper we describe a pattern-matching algorithm which finds all
occurrences of a pattern of length rn within a text of length n in O(rn + n) units of
time, without "backing up" the input text. The algorithm needs only O(m)
locations of internal memory if the text is read from an external file, and only
O(log m) units of time elapse between consecutive single-character inputs. All of
the constants of proportionality implied by these "O" formulas are independent
of the alphabet size.

* Received by the editors August 29, 1974, and in revised form April 7, 1976.
t Computer Science Department, Stanford University, Stanford, California 94305. The work of

this author was supported in part by the National Science Foundation under Grant GJ 36473X and by
the Office of Naval Research under Contract NR 044-402.

Xerox Palo Alto Research Center, Palo Alto, California 94304. The work of this author was
supported in part by the National Science Foundation under Grant GP 7635 at the University of
California, Berkeley.

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts 02139. The work of this author was supported in part by the National Science Foundation
under Grant GP-6945 at University of California, Berkeley, and under Grant GJ-992 at Stanford
University.

323



 33

CYCLIC ROTATION

A string s is a cyclic rotation of t if s and t have the same length and  
s is a suffix of t followed by a prefix of t. 
 
 
 
 
Problem.  Given two binary strings s and t, design a linear-time algorithm  
to determine if s is a cyclic rotation of t.

R O T A T E D S T R I N G  

S T R I N G R O T A T E D

yes

A B A B A B B A B B A B A  

B A B B A B B A B A A B A

yes

R O T A T E D S T R I N G  

G N I R T S D E T A T O R

no



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ brute force 

‣ Knuth–Morris–Pratt 

‣ Boyer–Moore

5.3  SUBSTRING SEARCH

Robert Boyer J. Strother Moore

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


Intuition. 

独Scan characters in pattern from right to left. 

独Can skip as many as m text chars when finding one not in the pattern.

Boyer–Moore:  mismatched character heuristic

 36

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A
 0   5   N  E  E  D  L  E
 5   5                  N  E  E  D  L  E
11   4                                    N  E  E  D  L  E
15   0                                                N  E  E  D  L  E 
   return i = 15

 pattern

 text

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A
 0   5   N  E  E  D  L  E
 5   5                  N  E  E  D  L  E
11   4                                    N  E  E  D  L  E
15   0                                                N  E  E  D  L  E 
   return i = 15

 pattern

 text

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A
 0   5   N  E  E  D  L  E
 5   5                  N  E  E  D  L  E
11   4                                    N  E  E  D  L  E
15   0                                                N  E  E  D  L  E 
   return i = 15

 pattern

 text

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search 

 i   j   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
         F  I  N  D  I  N  A  H  A  Y  S  T  A  C  K  N  E  E  D  L  E  I  N  A
 0   5   N  E  E  D  L  E
 5   5                  N  E  E  D  L  E
11   4                                    N  E  E  D  L  E
15   0                                                N  E  E  D  L  E 
   return i = 15

 pattern

 text

align N in text with
N in pattern

align N in text with
N in pattern

no S in pattern



Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 1.  Mismatch character not in pattern.

 37

.  .  .  .  .  .  T  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E
txt

pat

i

before

mismatch character T not in pattern:  increment i one character beyond T

.  .  .  .  .  .  T  L  E  .  .  .  .  .  .  

              N  E  E  D  L  E
txt

pat

i

after



Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 2a.  Mismatch character in pattern.

 38

.  .  .  .  .  .  N  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E
txt

pat

i

before

mismatch character N in pattern:  align text N with rightmost (why?) pattern N

.  .  .  .  .  .  N  L  E  .  .  .  .  .  .  

            N  E  E  D  L  E
txt

pat

i

after



Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 2b.  Mismatch character in pattern (but heuristic no help).

 39

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E
txt

pat

before

i

mismatch character E in pattern:  align text E with rightmost pattern E ?

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

  N  E  E  D  L  E
txt

pat

aligned with rightmost E?

i



Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

Case 2b.  Mismatch character in pattern (but heuristic no help).

 40

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

      N  E  E  D  L  E
txt

pat

mismatch character E in pattern:  increment i by 1

i

.  .  .  .  .  .  E  L  E  .  .  .  .  .  .  

        N  E  E  D  L  E
txt

pat

i

before

after



Which text character is compared with the E next in Boyer-Moore? 

A. R (index 5)

B. O (index 6)

C. O (index 12)

D. O (index 13)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B O O Y E R O B E R T M O O R E J S

M O O R E

M O O R E

M O O R E

Substring search:  quiz 5

text

pattern



Which text character is compared with the E next in Boyer-Moore? 

A. O

B. R

C. E

D. J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B O O Y E R O B E R T M O O R E J S

M O O R E

M O O R E

M O O R E

M O O R E

M O O R E

Substring search:  quiz 6

text

pattern



Boyer–Moore:  mismatched character heuristic

Q.  How much to skip? 

A.  Precompute index of rightmost occurrence of character c in pattern. 

     (�1 if character not in pattern)

 43

 right = new int[R];  
 for (int c = 0; c < R; c++)  
    right[c] = -1;  
 for (int j = 0; j < m; j++)  
    right[pat.charAt(j)] = j; 

Boyer-Moore skip table computation

c right[c]

          N   E   E   D   L   E
          0   1   2   3   4   5
A    -1  -1  -1  -1  -1  -1  -1     -1
B    -1  -1  -1  -1  -1  -1  -1     -1
C    -1  -1  -1  -1  -1  -1  -1     -1
D    -1  -1  -1  -1   3   3   3      3
E    -1  -1   1   2   2   2   5      5
...                                 -1
L    -1  -1  -1  -1  -1   4   4      4
M    -1  -1  -1  -1  -1  -1  -1     -1
N    -1   0   0   0   0   0   0      0
...                                 -1



 public int search(String txt)  
 {  
    int n = txt.length(); 
    int m = pat.length(); 
    int skip;  
    for (int i = 0; i <= n-m; i += skip)  
    {  
       skip = 0;  
       for (int j = m-1; j >= 0; j--) 
       { 
          if (pat.charAt(j) != txt.charAt(i+j))  
          {  
             skip = Math.max(1, j - right[txt.charAt(i+j)]);  
             break;  
          } 
       }  
       if (skip == 0) return i; 

    }  
    return n; 
} 

Boyer–Moore:  Java implementation

 44

compute 

skip value

match

in case other term is zero or negative



Property.  Substring search with the Boyer–Moore mismatched character 

heuristic takes about ~ n / m character compares to search for a pattern of 

length m in a text of length n. 

 
Worst-case.  Can be as bad as  ~ m n. 

 
 
 
 
 
 
 
 
 
Boyer–Moore variant.  Can improve worst case to ~ 3 n character compares 

by adding a KMP-like rule to guard against repetitive patterns.

Boyer–Moore:  analysis

 45

sublinear!

Boyer-Moore-Horspool substring search (worst case)

 i skip     0  1  2  3  4  5  6  7  8  9

            B  B  B  B  B  B  B  B  B  B 

 0   0      A  B  B  B  B   
 1   1         A  B  B  B  B 
 2   1            A  B  B  B  B 
 3   1               A  B  B  B  B 
 4   1                  A  B  B  B  B 
 5   1                     A  B  B  B  B

   

txt

pat



Which substring search algorithm does Java’s indexOf() method use? 

A. Brute-force search

B. Knuth–Morris–Pratt

C. Boyer–Moore

D. Rabin–Karp

Substring search:  quiz 7


