A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

» introduction

» cut property

» edge-weighted graph API
» Kruskal’s algorithm

» Prim’s algorithm

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

graph G
spahning tree T

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

not connected

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

not a tree (cyclic)

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

not spanning

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Ay
NN

edge-weighted graph G

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.
Output. A spanning tree of minimum weight.

minimum spanning tree T
(weight=52=4+6+10+5+ 11+ 9 + 7)

Brute force. Try all spanning trees?

Minimum spanning trees: quiz 1

Let 7 be a spanning tree of a connected graph G with V vertices.
Which of the following statements are true?

T contains exactly V-1 edges.
Removing any edge from T disconnects it.

Adding any edge to T creates a cycle.

O N ® p

All of the above.

spanning tree T of graph G

Network design

10

http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

11

Slime mold grows network just like Tokyo rail system

Rules for Biologically Inspired
Adaptive Network Design

Atsushi Tero,™-? Seiji Takagi, Tetsu Saigusa,® Kentaro Ito,* Dan P. Bebber,* Mark D. Fricker,*
Kenji Yumiki,® Ryo Kobayashi,>® Toshiyuki Nakagaki®-¢*

https://www.youtube.com/watch?v=GwKuFREOgmo

12

Applications

MST is fundamental problem with diverse applications.

Cluster analysis.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Curvilinear feature extraction in computer vision.

Find road networks in satellite and aerial imagery.

Handwriting recognition of mathematical expressions.

Measuring homogeneity of two-dimensional materials.

Model locality of particle interactions in turbulent fluid flows.
Reducing data storage in sequencing amino acids in a protein.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
Network design (communication, electrical, hydraulic, computer, road).

Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

13

http://www.ics.uci.edu/~eppstein/gina/mst.html
http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

4.3 MINIMUM SPANNING TREES

» cut property

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:
« No parallel edges.
. The graph is connected. = MST exists.
. The edge weights are distinct. = MST is unique.

Note. Algorithms still work even if parallel edges or duplicate edge weights.

2 10 no two edge
6 weights are equal

11 13

12
14 16

20

15

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

crossing edges connect
gray and white vertices

minimum-weight crossing edge
must be in the MST

16

Minimum spanning trees: quiz 2 s

Which is the min weight edge crossing the cut {2,3,5,6}?
A. 0-7 (0.16)

0-7 0.16

B. 2-3(0.17) 5.3 0.17

C. 0-2 (0.26) =7 0.1

0-2 0.26

D. 5-7 (0.28) >=7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

<::> 4-5 0.35

1-2 0.36

4-7 0.37

<::> 0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

17

Cut property: correctness proof

Def. A cut is a partition of a graph’s vertices into two (nonempty) sets.

Def. A crossing edge connects two vertices in different sets.

Cut property. Given any cut, the min-weight crossing edge e is in the MST.

Pf.

Suppose e is not in the MST.
Adding e to the MST creates a cycle.
Some other edge fin cycle must be a crossing edge.
Removing f and adding ¢ is also a spanning tree.
Since weight of ¢ is less than the weight of £,
that spanning tree has lower weight.
Contradiction. =

the MST does
not contain e

adding e to MST
creates a unique cycle

18

Greedy MST algorithm demo

« Start with all edges colored gray.

« Find cut with no black crossing edges; color its min-weight edge black.

« Repeat until V-1 edges are colored black.

O

)

®)

O

))
9

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

© O O O O O O O O O O O oo O o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

19

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.
« Any edge colored black is in the MST (via cut property).
- Fewer than V-1 black edges = cut with no black crossing edges.
(consider cut whose vertices are any one connected component)

=N

a cut with no black crossing edges fewer than V-1 edges colored black

20

Greedy MST algorithm: efficient implementations

Proposition. The greedy algorithm computes the MST.

Efficient implementations. Find cut? Find min-weight edge?
Ex 1. Kruskal’s algorithm. [stay tuned]

Ex 2. Prim’s algorithm. [stay tuned]

Ex 3. Boruvka’s algorithm.

21

Removing two simplifying assumptions

Q. What if edge weights are not all distinct?
A. Greedy MST algorithm still finds a MST!
(our correctness proof fails, but that can be fixed)

(2)

(1) 13 0.50 (1) O
2 4 1.00

(3)m((4) 34 0.50 (3)(4)

Q. What if graph is not connected?

= =
w N
o
1 O
o O

34 0.50

A. Finds a minimum spanning forest = MST of each connected component.

45 0.61
o o e 15 0.11
6 9 2 3 0:35

O
o 16 0.10
02 0.22

can independently compute
MSTs of components

22

4.3 MINIMUM SPANNING TREES

Algorithms » edge-weighted graph API

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Weighted edge API

Edge abstraction needed for weighted edges.

public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w
int either() either endpoint
int other(int v) the endpoint that's not v
int compareTo(Edge that) compare this edge to that edge
weight

O, ()

Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation

public class Edge implements Comparable<Edge>

{ private final int v, w;

private final double weight;

public Edge(int v, int w, double weight)

{
this.v = v; <
this.w = w;
this.weight = weight;

}

public 1int either()
{ return v; } < either endpoint

constructor

public 1nt other(int vertex)

{

1t (vertex == v) return w; < other endpoint
else return v;

}

public int compareTo(Edge that)

{
if (this.weight < that.weight) return -1; < compare edges by weight

else 1f (this.weight > that.weight) return +1;
else return O;

25

Edge-weighted graph API

public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices
void addEdge(Edge e) add weighted edge e to this graph
Iterable<Edge> adj(int v) edges incident to v

Conventions. Allow self-loops and parallel edges.

26

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

tinyEWG. txt ~>6|/0].58 0]2|.2060—0|4/.38 O0|7].16 Bag
V\"8 . objects
16 < 2di[] ~113].29—{1]2|.36—1|7]|.19—]1]|5/.32
45 035 J/
4 7 0.37 ~
57 0.28 1 / 612(.40—2|7|.34—1|2|(.36—|0|2]|.26/—2|3]|.17
07 0.16 5
15 0.32 S) >
Lo 0.3 Tl 316/.52 1]31/.29 2131(.17
. 4
A : - —{>[6]4].93{o0]4].38{4]7].37]{4]5].35
02 0.26 \ X
6 <~ references to the
15 838 7 \ 1(5/(.32 5(71.28 4151.35 same Edge object
2 7 0.34
6 2 0.40 \64.93 60.58‘36.52 62.40
36 0.52
6 0 0.58 ~|2171.34 1(7(.19—|0|7/.16 5171.280—]4|7|.37
6 4 0.93

27

Edge-weighted graph: adjacency-lists implementation

public class EdgeWeightedGraph
{

private final int V; same as Graph, but adjacency

private final Bag<kdge>[] adj; < lists of Edges instead of integers
public EdgeWeightedGraph(int V)
{

this.V = V; < constructor

adj = (Bag<Edge>[]) new Bag[V];
for (int v = 0; v < V; Vv++)
adj[v] = new Bag<Edge>();

}

public void addEdge(Edge e)

{
int v = e.either(), w = e.other(v);
adi[v].add(e): add edge to both

'—! ' ’ < adjacency lists

adj[w].add(e);

}

public Iterable<Edge> adj(int v)
{ return adj[v]; }

Minimum spanning tree API

Q. How to represent the MST?

public class MST

MST (EdgeWeightedGraph G)

Iterable<Edge> edges()

constructor

edges in MST

29

4.3 MINIMUM SPANNING TREES

Algorithms

» Kruskal’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Kruskal’s algorithm demo

Consider edges in ascending order of weight.

« Add next edge to tree T unless doing so would create a cycle. graph edges

sorted by weight

!

0-7 0.16

2-3 0.17

@ 1-7 0.19

<::> 0-2 0.20

<::> 5-7 0.28
@ 1-3 0.29

<::> 1-5 0.32

(::) 2-7 0.34

4-5 0.35

<::> 1-2 0.36

<::> 4-7 0.37
0-4 0.38

an edge-weighted graph 6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Kruskal’s algorithm: visualization

32

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. [Case 1] Kruskal’s algorithm adds edge e = v—w to T.
« Vertices v and w are in different connected components of T.
« Cut = set of vertices connected to v in T.
« By construction of cut, no edge crossing cut is in T.
« No edge crossing cut has lower weight. Why?
« Cut property = edge e is in the MST.

add edge to tree

®
7 w
O (2

O ©

33

Kruskal’s algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. [Case 2] Kruskal’s algorithm discards edge e = v—w.
« From Case 1, all edges in T are in the MST.
« The MST can’t contain a cycle. =

adding edge to tree
would create a cycle

34

Minimum spanning trees: quiz 3 i

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.

How difficult to implement?

A, 1
B. logV
C. Vv
D. E+V

add edge to tree adding edge to tree
would create a cycle

Case 1: v and w in same component Case 2: v and w in different components

35

Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.
« Maintain a set for each connected component in 7.
« If vand w are in same set, then adding v—w would create a cycle.
« To add v—w to T, merge sets containing v and w.

> &

Case 2: adding v-w creates a cycle Case 1: add v-w to T and merge sets containing v and w

36

Kruskal’s algorithm: Java implementation

public class KruskalMST
{

private Queue<Edge> mst = new Queue<Edge>();

public KruskalMST(EdgeWeightedGraph G)

{
DirectedEdge[] edges = G.edges();
Arrays.sort(edges);
UF uf = new UF(G.V(Q);
for (int 1 = 0; 1 < G.EQ; i++)
{
Edge e = edges[i];
int v = e.either(), w = e.other(v);
if (uf.find(v) != uf.find(w))
{
uf.union(v, w);
mst.enqueue(e);
}
}
}

public Iterable<Edge> edges()
{ return mst; }

edges in the MST

sort edges by weight

maintain connected components

greedily add edges to MST

edge v—w does not create cycle

merge connected components

add edge e to MST

37

Kruskal’s algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional
to Elog V (in the worst case).

Pf.
operation frequency time per op

same as ElogV

SORT 1 Elog E if no parallel edges
UNION V-1 log V7
FIND 2F log V7

Tt using weighted quick union

38

Greed is good

Gordon Gecko (Michael Douglas) evangelizing the importance of greed (in algorithm design?)
Wall Street (1986)

MAXIMUM SPANNING TREE

Problem. Given an undirected graph G with positive edge weights,
find a spanning tree that maximizes the sum of the edge weights.

Running time. Elog E (or better).

maximum spanning tree T (weight = 104) 40

4.3 MINIMUM SPANNING TREES

Algorithms

» Prim’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Prim’s algorithm demo

« Start with vertex 0 and greedily grow tree T.
« Add to T the min weight edge with exactly one endpoint in 7.

« Repeat until V-1 edges.

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
an edge-weighted graph 6-0 0.58
6-4 0.93

Prim’s algorithm: visualization

43

Prim’s algorithm: proof of correctness

Proposition. [Jarnik 1930, Dijkstra 1957, Prim 1959]
Prim’s algorithm computes the MST.

Pf.

Let e = min weight edge with exactly one endpoint in 7.

e Cut = set of vertices in T.

« No crossing edge is in T.

« No crossing edge has lower weight.

« Cut property = edge e is in the MST. =

edge e = 7-5 added to tree

® ©

44

Minimum spanning trees: quiz 4

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult to implement?

O N w »

log £

1-7 is min weight edge with
exactly one endpoint in T

OO Ph~DNUUVIOHR

O A NN NDN N
© O O OO OO0

.19
.26
.28
.34
.37
.38
.58

45

Prim’s algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Key = edge; priority = weight of edge.
« DELETE-MIN to determine next edge ¢ =v-w to add to T.
 If both endpoints v and w are marked (both in T), disregard.
« Otherwise, let w be the unmarked vertex (not in T):
— add eto Tand mark w
— add to PQ any edge incident to w (assuming other endpoint not in 7)

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
1-7 0.19

.26
.28
.34
.37
.38
.58

© O O OO Oo

46

Prim’s algorithm: lazy implementation demo

« Start with vertex 0 and greedily grow tree T.
« Add to T the min weight edge with exactly one endpoint in 7.
« Repeat until V-1 edges.

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

®

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

© O O O O O O O O O O O oo O o o

47

Prim’s algorithm: lazy implementation

public class LazyPrimMST

{
private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pq; // PQ of edges
public LazyPrimMST (WeightedGraph G)
{
pq = new MinPQ<Edge>();
mst = new Queue<Edge>();
marked = new boolean[G.V()];
visit(G, 0); < assume G is connected
while (!pg.isEmpty() & & mst.size() < G.V(Q) - 1)
{
Edge e = pg.delMin(); < repeatedly delete the
int v = e.either(), w = e.other(v); min weight edge e = v-w from PQ
if (marked[v] && marked[w]) continue; < ignore if both endpoints in T
mst.enqueue(e); < add edge e to tree
1_1: (Imarkedlv]) V-I_S-I_t(c’ v); < add either v or w to tree
if (Imarked[w]) visit(G, w);
}
}
}

48

Prim’s algorithm: lazy implementation

private void visit(WeightedGraph G, int v)
{
marked[v] = true;
for (Edge e : G.adj(v))
it (!'marked[e.other(v)])
pq.insert(e);
}

public Iterable<Edge> mst()
{ return mst; }

addvtoT

for each edge e = v—w, add to
PQ if w not already in T

49

Lazy Prim’s algorithm: running time

Proposition. Lazy Prim’s algorithm computes the MST in time proportional
to E log E and extra space proportional to E (in the worst case).

N

minor defect

DELETE-MIN E log E

INSERT E log E

50

Prim’s algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in 7.

Observation. For each vertex v, need only lightest edge connecting v to T.
« MST includes at most one edge connecting v to 7. Why?
« If MST includes such an edge, it must take lightest such edge. Why?

51

Prim’s algorithm: eager implementation demo

« Start with vertex 0 and greedily grow tree T.
« Add to T the min weight edge with exactly one endpoint in 7.
« Repeat until V-1 edges.

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

®

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

© O O O O O O O O O O O oo O o o

52

Prim’s algorithm: eager implementation demo

 Start with vertex 0 and greedily grow tree T.
« Add to T the min weight edge with exactly one endpoint in 7.
« Repeat until V-1 edges.

v edgeTo[] distTo[]
O - -

7/ 0-7 0.16
1 1-7 0.19

2 0-2 0.26

3 2-3 0.17

5 5-7 0.28
4 4-5 0.35

6 6-2 0.40

MST edges
0-7 1-7 0-2 2-3 5-7 4-5 6-2

Prim’s algorithm: eager implementation

Challenge. Find min weight edge with exactly one endpoint in 7.

/ PQ has at most one entry per vertex

Eager solution. Maintain a PQ of vertices connected by an edge to 7,
where priority of vertex v = weight of lightest edge connecting v to T.
« Delete min vertex v; add its associated edge e=v—w to T.
« Update PQ by considering all edges e =v—x incident to v
— ignore if x is already in T
— add x to PQ if not already on it
— decrease priority of x if v—x becomes lightest edge connecting xto T

1-7 0.19
0-2 0.26 —«—— red: on PQ
.29
0-4 0.38
7 0.28
-0 0.58
7 0.16

NOoOOuth WwiN RO
v
o

black: on MST

Indexed priority queue

Associate an index between 0 and n -1 with each key in a priority queue.
« Insert a key associated with a given index. \
« Delete a minimum key and return associated index. for Prim’s algorithm: n =V,

index = vertex, key = weight

« Decrease the key associated with a given index.

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create indexed PQ with indices 0, 1, ..., n—1

void insert(int 1, Key key) associate key with index i

int delMin()

remove a minimal key and return its associated index

void decreaseKey(int 1, Key key) decrease the key associated with index i

55

Indexed priority queue: implementation

Binary heap implementation. [see Section 2.4 of textbook]
 Start with same code as MinPQ.
« Maintain parallel arrays so that:
— keys[i] is the priority of vertex i
— qp[i] is the heap position of vertex 1

- pq[i] is the index of the key in heap position 1
« Use swim(gp[i]) to implement decreaseKey(i, key).

decrease key of vertex 2 to C

i 0 1 2 3 4 5 6 7 8
keys[i] A SO R T I N G -
gp[i] 1 5(4) 8 7 6 2 3 -
pglil] - O 6‘7\]@ 1 5 4 3

vertex 2 is at
heap index 4

56

Prim’s algorithm: which priority queue?

Depends on PQ implementation: V INSERT, V DELETE-MIN, < E DECREASE-KEY.

PQ implementation INSERT DELETE-MIN DECREASE-KEY “

unordered array

binary heap logV log V log V ElogV
d-way heap loga V dlogsV loga V E logevV
Fibonacci heap 17 log V1 1+ E+VlogV

+ amortized

Bottom line.
« Array implementation optimal for complete graphs.
« Binary heap much faster for sparse graphs.

« 4-way heap worth the trouble in performance-critical situations.
« Fibonacci heap best in theory, but not worth implementing.

57

MST: algorithms of the day

algorithm visualization

Kruskal

Prim

bottleneck

sorting
union—find

priority queue

running time

ElogV

ElogV

58

