A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees

» red-black BSTs

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Symbol table review

guarantee average case
ordered

implementation
ops?

sequential search

(unordered list) " n i n n n
binary search ! 1 >
(ordered array) 08 1 " n ogn n n

goal log n log n log n log n v

Challenge. Guarantee performance. T far (meliing e cedie:
/ introduced to the world in this course!

This lecture. 2-3 trees and left-leaning red-black BSTs.

key
interface

equals()

compareTo()

compareTo()

compareTo()

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

2-3 tree

Allow 1 or 2 keys per node.
« 2-node: one key, two children.
« 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

@ how to maintain?

3-node 2-node
smaller than E E J e
\ larger than J

OO CING
AN

between E and J null link

2-3 tree demo

Search.

« Compare search key against key(s) in node.
« Find interval containing search key. @

- Follow associated link (recursively).

search for H

O
E) (R)

SOOI

2-3 tree: Insertion

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.

insert G

2-3 tree: Insertion

Insertion into a 3-node at bottom.

« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
« Repeat up the tree, as necessary.

 If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert Z

2-3 tree construction demo

insert S

2-3 tree construction demo

2-3 tree

2-3 tree: global properties

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

root parent is a 3-node
(b)
— o e fe (@e (b d e
—
(a) (e

parent is a 2-node

ddl
left O G W GO ace
@) () b ¢ d (b) ()
an
c d (b)

right (@) . a c right (a b) (a b d)
(d) (c) (e

l

l

10

2-3 tree: performance

Splitting a 4-node is a local transformation: constant number of operations.

/@\
b cd

less between\ /between\ /between\ /between greater
than a aandb b and c c and d dand e than e
da C e

(b) (d)

less between\ /between\ /between\ /between greater
than a aandb b and c c and d dand e than e

11

Balanced search trees: quiz 1

What is the maximum height of a 2-3 tree with n keys?

A. ~log; n
B. ~log, n
C. ~2log,n
D.

~nNn

12

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
« Worst case: Ign. [all 2-nodes]
- Best case: logzn =.6311gn. [all 3-nodes]
« Between 12 and 20 for a million nodes.
« Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

13

ST implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
delete delete

sequential search

(unordered list) " " " " " " equals()
(::‘ZZ:Z:ZE:‘:;I;) log n n n log n n n v compareTo()
BST n n n log n log n Vn v compareTo()
2-3 tree log n log n log n log n log n log n v compareTo()

but hidden constant c is large
(depends upon implementation)

14

2-3 tree: implementation?

Direct implementation is complicated, because:

Maintaining multiple node types is cumbersome.
« Need multiple compares to move down tree.

« Need to move back up the tree to split 4-nodes.
« Large number of cases for splitting.

fantasy code

public void put(Key key, Value val)
{
Node x = root;
while (x.getTheCorrectChild(key) != null)
{
x = x.getTheCorrectChildKey();
if (x.1s4Node()) x.split(Q);
}
if (x.1s2Node()) x.make3Node(key, val);
else if (x.is3Node()) x.maked4Node(key, val);

Bottom line. Could do it, but there’s a better way.

15

3.3 BALANCED SEARCH TREES

» red-black BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
« No way to tell a 3-node from two 2-nodes.

« Can’t (uniquely) map from BST back to 2-3 tree.

Approach 2. Regular BST with red “glue” nodes.
« Wastes space for extra node.
« Messy code.

Approach 3. Regular BST with red “glue” links.
« Widely used in practice.
« Arbitrary restriction: red links lean left.

&

17

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use “internal” left-leaning links as “glue” for 3-nodes.

3-node @ “ larger key is root

less between greater
than a aandb than b greater
than b

less between
than a aandb

black links connect

red links “glue 2-nodes and 3-nodes

nodes within a 3-node

corresponding red-black BST

18

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red—black tree

2-3 tree

19

An equivalent definition

A BST such that:
« No node has two red links connected to it.
« Every path from root to null link has the same number of black links.

« Red links lean left. \

“perfect black balance”

20

Balanced search trees: quiz 2

Which BST corresponds to the following 2-3 tree?

EJ

C. Both A and B.

D. Neither A nor B.

21

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster

(because of better balance)

public Value get(Key key)

{
Node X = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
}

Remark. Many other ops (floor, iteration, rank, selection) are also identical.

22

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =
can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
: h
private class Node h.left.color 4 h.right.color
{ ks RED ™ (E _ is BLACK
Key key; G o
Value val; Q @ @

Node Teft, right;
boolean color;

}

private boolean isRed(Node x)

{

if (x == null) return false;
return x.color == RED; \\

null links are black

23

Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:
« Symmetric order.
« Perfect black balance.
[but not necessarily color invariants]

right-leaning two red children left-left red left-right red
red link (a temporary 4-node) (a temporary 4-node) (a temporary 4-node)

To restore color invariant: apply elementary ops (rotations and color flips).

24

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

J N private Node rotatelLeft(Node h)
{
h assert i1sRed(h.right);
Node x = h.right;
X h.right = x.left;
less x.left = h;
than E x.color = h.color;
h.color = RED;
between greater return Xx;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

25

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after) private Node rotateLeft(Node h)
{
X assert i1sRed(h.right);
Node x = h.right;
h h.right = x.left;
greater X.left = h,
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

26

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

{(before) private Node rotateRight(Node h)
{
1 assert isRed(h.left);
Node x = h.left;
X h.left = x.right;
greater X.right = h;
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

27

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

I private Node rotateRight(Node h)
{
X assert isRed(h.left):
Node x = h.left;
h h.left = x.right;
less X.I’"ight = h;
than E x.color = h.color;
h.color = RED;
between greater return Xx;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

28

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors(Node

{
assert !isRed(h);

assert i1sRed(h.left);
assert 1sRedCh.right);
h.color = RED;

h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

h)

29

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node

{
assert !isRed(h);

assert i1sRed(h.left);
assert 1sRedCh.right);
h.color = RED;

h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

h)

30

Insertion into a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

left root rlght

o o root
search ends
“~at this null link
™~ search ends
: : attached new node
at this null link e it red link
L root

@ red link to
new node
e ™ containing a
converts 2-node
to 3-node

root
o

rotated left

a ™\ to make a
legal 3-node

31

Insertion into a LLRB tree

Case 1. Insert into a 2-node at the bottom.

to maintain symmetric order

« Do standard BST insert; color new link red. «<——— and perfect black balance

« If new red link is a right link, rotate left. «—— to restore color invariants

insert C

(E)
(A) IS)
7 (R)

add new
node here

right link red
so rotate left

PO

32

Insertion into a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

larger

‘D search ends
_— at this

a null link

attached new

@ o node with

d link
a G re

colors flipped
@ «— to black

(a) (o

smaller

N search ends
at this null link

attached new
ode with
red link

rotated
right
(@) (c)

colors flipped
to bﬁflg
(@) (o)

between

search ends
at this null link

e

attached new

node with
@ red link

O

rotated left

rotated

« right
()

colors flipped
@ «— to black

(®)
=)

8

33

Insertion into a LLRB tree

Case 2. Insert into a 3-node at the bottom.

:] : to maintain symmetric order
- Do standard BST insert; color new link red. <—— "4 perfect black balance
« Rotate to balance the 4-node (if needed).

« Flip colors to pass red link up one level. o restore color imvariants

« Rotate to make lean left (if needed).

inserting H two lefts in a row
G S0 rotalte right
add new
node here
right link red
so rotate left
both children red l

so flip colors

!

34

Insertion into a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

to maintain symmetric order

- Do standard BST insert; color new link red. <—— "4 perfect black balance
Rotate to balance the 4-node (if needed).

Flip colors to pass red link up one level.

<«——— to restore color invariants
Rotate to make lean left (if needed).

Repeat case 1 or case 2 up the tree (if needed).

inserting P)
both children red
@ so flip colors
(E) (S)
(C) (M)
Q m X G m "~ both children
add new Q 'red >
node here [G

two lefts in a row
right link red so rotate right \
so rotate left

both children red

so flip colors

35

Red-black BST construction demo

insert SEARCHXMPL

36

Insertion into a LLRB tree: Java implementation

Can distill down to three cases!
« Right child red; left child black: rotate left.

h
- Left child red; left-left grandchild red: rotate right. gﬁ o h
h = rotate ;&1
\right

rotate flip
g% colors

« Both children red: flip colors.

private Node put(Node h, Key key, Value val)

{ : insert at bottom
if (h == null) return new Node(key, val, RED); < (and color it red)
int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = putCh.left, key, val);
else if (cmp > 0) h.right = putCh.right, key, val);
else if h.val = val;
1f (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); <«——— lean left
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); <«——— balance 4-node
if (isRed(h.left) && isRed(h.right)) f1ipColors(h); <«——— split 4-node
return h; T

} only a few extra lines of code provides near-perfect balance

37

M DO O)

255 insertions in descending order

Insertion into a LLRB tree: visualization

N =255

max = 10
avg = 7.3
opt=7.0

x ﬁ i ‘s? (i

Ll l l“..

@

255 random insertions

tv,Y

|
!

lll

40

Balanced search trees: quiz 4

What is the maximum height of a LLRB tree with n keys?

A. ~logsn
B. ~log, n
C. ~2log,n
D.

~nNn

41

Balance in LLRB trees

Proposition. Height of tree is <21gn in the worst case.

Pf.
« Black height = height of corresponding 2-3 tree < Ign.
« Never two red links in-a-row.

I A‘K A‘
O A A it «ﬂ

Empirical observation. Height of tree is ~ 1.01g n in typical applications.

42

ST implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
search delete search delete

sequential search

(unordered list) " " " " " " FESL
(:::Z:Z;Zi:;t) log n n n log n n n v compareTo()
BST n n n log n log n Vn v compareTo()
2-3 tree log n log n log n log n log n log n v compareTo()

red-black BST log n log n log n log n v compareTo()

hidden constant c is small
(at most 2 1g n compares) 43

War story: why red-black?

Xerox PARC innovations. [1970s]
« Alto.
- GUL.
« Ethernet.

XEROX.

- Smalltalk.
(- Laser printing.)
« Bitmapped display.
« WYSIWYG text editor.

B

Xerox Alto

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

L.co J. Guibas

Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

ABSTRACT

In this paper we present a uniform framework for the implementation
and study of balanced tree algovithms. We show how to imbed in this

Robert Sedgewick*

Program in Computer Science
and Brown University

Providence, R. I,

the way down towards a lcaf. As we will sce, this has a number of
significant advantages over the older methods. We shall examine a
number of variations on a common theme and cxhibit full
implementations which are notable for their brevity. One
implementation is cxamined carcfully, and some propertics about its

46

War story: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
« Red-black BST.

« Exceeding height limit of 80 triggered error-recovery process.

N

should allow for <24 keys

Extended telephone service outage.
« Main cause = height bound exceeded!

« Telephone company sues database provider.
« Legal testimony:

“ If implemented properly, the height of a red—black BST

I

with n keys is at most 2 lgn.” — expert witness

47

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
« C++ STL: map, multimap, multiset.
« Linux kernel: completely fair scheduler, 1inux/rbtree.h.
« Emacs: conservative stack scanning.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs,

B-trees (and cousins) are widely used for file systems and databases.

« Windows: NTFS.

« Mac: HFS, HFS+.

« Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.

« Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

H ORACLE
Mac bhﬁafs DATABASE

48

Red-black BSTs in the wild

\ b /l/
vy
THEY'WILLFIND YOU.,

Common sense. Sixth sense.

Together they're the
FBI's newest team.

49

