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Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
« Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.
« Quicksort honored as one of top 10 algorithms of 20™" century

in science and engineering.

Mergesort. [this lecture]
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Quicksort. [next lecture]
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Mergesort

Basic plan.

« Divide array into two halves.
« Recursively sort each half.
« Merge two halves.

mput M E R G E S O R T E X A M P L E

sortlefthaf E E G M O R R S

sort right half A E E L M P T X

mergeresuts A E E E E G L M M O P R R S T X
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Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to al[hi],
replace with sorted subarray a[l1o] to a[hi].

lo mid mid+1 hi
af] E E G M R A C E R T
N / N _/
' Y

sorted sorted




Mergesort: Transylvanian-Saxon folk dance

al0] al1] al2] al3] al4] al5] al6] al7] a[8] a[9]
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http://www.youtube.com/watch?v=XaqR3G_NVoo%0D

Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)

{
for (int k = To; k <= hi; k++) copy
aux[k] = a[k];

int 1 = lo, J = mid+1; merge
for (int k = 1o; k <= hi; k++)
{
if (1 > mid) alk]l = aux[j++];
else if (3 > hi) alk] = aux[1++];
else 1f (less(Caux[j], aux[1])) alk] = aux[j++];
else alk] = aux[i++];
}
}
lo 1 mid j hi

aux[] A G L 0 R I H T M S T

all A G H I L M



Mergesort quiz 1 2

How many calls does merge() make to 1ess() in order to merge two
sorted subarrays, each of length n/2, into a sorted array of length »?

A. ~Unto ~Wn
B. ~Wn
C. ~¥nto ~n

D. ~n



Mergesort: Java implementation

public class Merge

{
private static void merge(...)
{ }
private static void sort(Comparable[] a, Comparable[] aux, int lo, 1int hi)
{
1f (hi <= 10) return;
int mid = 1o + (hi - 1o) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid+1l, hi);
merge(a, aux, lo, mid, hi);
}
public static void sort(Comparable[] a)
{
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length - 1);
}

lo mid h1

10 11 12 13 14 15 16 17 18 19



Mergesort: trace

1

) O! 1)
) 2! 3)

merge(a, aux,
merge(a, aux,
merge(a, aux, O
merge(a, aux, 4, 4, 5)
merge(a, aux, 6, 6, 7)
merge(a, aux, 4, 5, 7)
merge(a, aux, O, 3, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)
merge(a, aux, 8, 9, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)
merge(a, aux, 12, 13, 15)
merge(a, aux, &8, 11, 15)
merge(a, aux, O, 7, 15)
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Mergesort quiz 2

Which of the following subarray lengths will occur when running
mergesort on an array of length 12?

£1,2,3,4,6,8, 12}
£1,2,3,6, 12

{1,2,4,8, 12 }

c n w »

{1,3,6,9, 12 }

11



Mergesort: animation

50 random items

http://www.sorting-algorithms.com/merge-sort

>

algorithm position
in order
current subarray

not in order
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http://www.sorting-algorithms.com/merge-sort

Mergesort: animation

50 reverse-sorted items

http://www.sorting-algorithms.com/merge-sort

\“V

algorithm position
in order
current subarray

not in order
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http://www.sorting-algorithms.com/merge-sort

Mergesort: empirical analysis

Running time estimates:
« Laptop executes 108 compares/second.
- Supercomputer executes 10'> compares/second.

insertion sort (n2) mergesort (n log n)
s | housana | il | iion | tousand | ion | wilen
home instant 2.8 hours 317 years instant 1 second 18 min
super instant 1 second 1 week instant instant instant

Bottom line. Good algorithms are better than supercomputers.

14



Mergesort analysis: number of compares

Proposition. Mergesort uses < nlgn compares to sort any array of length n.

Pf sketch. The number of compares C(n) to mergesort an array of length »
satisfies the recurrence:

C(n) = C(Jn/2) + C(n/2)) + n—1 forn >1, with C(1)=0.
t t t

left half right half merge

We solve this simpler recurrence, and assume n is a power of 2:

result holds for all n

Dn) =2D(n/2) + n, for n > 1, with D(1)=0. (analysis cleaner in this case)

15



Divide-and-conquer recurrence

Proposition. If D(n) satisfies D(n)=2D®/2) + n forn >1, with D(1) =0,

then D(n) = nlg n.

Pf by picture. [assuming n is a power of 2]

D(n)
D(n/?2) D(n/?2)
D(n/4) D(n/4) Dn/4) D(n/4)

AT ATV ANYA

Dn/8) Dn/8) Dn/8 Dn/8 Dm/8) Dmn/8) Dmn/8) Dn/8)

n =n
2 (n/2) =n
4 (n/4) =n
8 (n/8) =n

( D(n)=nlgn )
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Mergesort analysis: number of array accesses

Proposition. Mergesort uses < 6 nlgn array accesses to sort any array of
length n.

Pf sketch. The number of array accesses A(n) satisfies the recurrence:

An) < A([n/2]) + A(|n/2]) + 6n forn >1, with A(1) =0.

Key point. Any algorithm with the following structure takes nlog n time:

public static void f(int n)

{

if (nh == 0) return;

f(n/2); <— solve two problems

f(n/2); <«—— of half the size

Tinear(n); < do a linear amount of work
}

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...



Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to n.
Pf. The array aux[] needs to be of length »n for the last merge.

two sorted subarrays

A CD GHTIMNUV B E F J O P Q R S T

merged result

AB CDEF GHTI JMNU OWPAQRS T UV

Def. A sorting algorithm is in-place if it uses < clog n extra memory.
Ex. Insertion sort and selection sort.

Challenge 1 (not hard). Use aux[] array of length ~ % n instead of .
Challenge 2 (very hard). In-place merge. [Kronrod 1969]

18



Mergesort quiz 3

Is our implementation of mergesort stable?

A. Yes.

B. No, but it can be easily modified to be stable.
C. No, mergesort is inherently unstable.

D. [Idon’t remember what stability means.

\ a sorting algorithm is stable if it

preserves the relative order of equal keys

input C At B A A3

sorted Az A1 A B C

not stable

19



Stability: mergesort

Proposition. Mergesort is stable.

public class Merge

{

private static void merge(...)

{ }

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)

{
it (hi <= 10) return;
int mid = 1o + (h1 - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid+1l, hi);
merge(a, aux, lo, mid, hi);

public static void sort(Comparable[] a)

{ }

Pf. Suffices to verify that merge operation is stable.

20



Stability: mergesort

Proposition. Merge operation is stable.

private static void merge(...)

{
for (int k = 1o; k <= hi; k++)
aux[k] = alk];
int 1 = lo, J = mid+1;
for (int k = 1o; k <= hi; k++)
{
if (1 > mid) alk] = aux[j++];
else if (37 > hi) alk] = aux[1++];
else 1f (less(Caux[j], aux[1])) alk] = aux[j++];
else alk]l] = aux[1++];
}
}
o 1 2 3 4 5 7 9 10
Ai A, As B D Ag C F G

Pf. Takes from left subarray if equal keys.



Mergesort: practical improvement

Use insertion sort for small subarrays.

« Mergesort has too much overhead for tiny subarrays.

« Cutoff to insertion sort for = 10 items.

private static void sort(...)

{
if (hi <= To + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}

int mid = lo + (h1 - 1o) / 2;
sort (a, aux, lo, mid);

sort (a, aux, mid+1l, hi);
merge(a, aux, lo, mid, hi);

22



Mergesort with cutoff to insertion sort: visualization

first subarray |I|"""I"|

second subarray ..|II||""|
first merge mlllll|||"""""""
il
_antll
..... anil|
first half sorted _..u m|II|||||"“I""""""""I"""l""
__.mII"I"
...||II|||"
...... |IIII|||"|"I|"||
....||II|""
..|II||I
...... antttiilll
second half sorted _.coorotttHIHHTIEELLLIEEEELTUIEERENUTIERETN . cewana |||||IIIIIIII|||||""""""|
result _...ccesssunnin mmm|||||IIIIIIIIII|||||||||||||||||"""""""""""""""""
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Bottom-up mergesort

Basic plan.

« Pass through array, merging subarrays of size 1.

« Repeat for subarrays of size 2, 4, 8§, ....

sz=1
merge(a, aux, 0, 0, 1)
merge(a, aux, 2, 2, 3)
merge(a, aux, 4, 4, 5)
merge(a, aux, 6, 6, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)
sz=2
merge(a, aux, O, 1, 3)
merge(a, aux, 4, 5, 7)
merge(a, aux, 8, 9, 11)
merge(a, aux, 12, 13, 15)
sz=4
merge(a, aux, O, 3, 7)
merge(a, aux, &8, 11, 15)
sz=28
merge(a, aux, O, 7, 15)

ali]
0 1 3 5 6 7 8 910 11 12 13 14 15
M E G S 0O R TEX AMP L E
E M
R
S
O R
E T
A X
M P
E L
E G R
O R S
A E T X
E L M P
E E M R R S
AAE E L M P T X
A E E ¢ L MMOWPIRR RS T X
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Bottom-up mergesort: Java implementation

public class MergeBU

{
private static void merge(...)
{ /* as before */ 1}
public static void sort(Comparable[] a)
{
int n = a.length;
Comparable[] aux = new Comparable[n];
for (int sz = 1; sz < n; sz = Sz+sZ7)
for (int 1o = 0; 1o < n-sz; 1o += sz+sz)
merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, n-1));
}
}

Bottom line. Simple and non-recursive version of mergesort.



Mergesort: visualizations

top-down mergesort (cutoff = 12)

bottom-up mergesort (cutoff = 12)

27



Mergesort quiz 4

Which is faster in practice: top-down mergesort or bottom-up
mergesort? You may assume that n is a power of 2.

A. Top-down (recursive) mergesort.
B. Bottom-up (non-recursive) mergesort.
C. No observable difference.

D. [Idon't know.

28



Natural mergesort

ldea. Exploit pre-existing order by identifying naturally occurring runs.

input

] 5 10 16 3 4 23 9 13 2 / 8 12 14
first run

] 5 10 16
second run

merge two runs

1 3 4 5 10 16 23

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

29



Timsort

« Natural mergesort.
« Use binary insertion sort to make initial runs (if needed).
« A few more clever optimizations.

This describes an adaptive, stable, natural mergesort, modestly called
timsort (hey, I earned it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than 1g(n!) comparisons needed, and
as few as n-1), yet as fast as Python's previous highly tuned samplesort
hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right,
alternately identifying the next run, then merging it into the previous
runs "intelligently". Everything else is complication for speed, and some
hard-won measure of memory efficiency.

Tim Peters

Consequence. Linear time on many arrays with pre-existing order.
Now widely used. Python, Java 7-11, GNU Octave, Android, ....

http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/tip/src/share/classes/java/util/Arrays.java


http://hg.openjdk.java.net/jdk7/jdk7/jdk/file/tip/src/share/classes/java/util/Arrays.java

Timsort bug (February 2015)

Envisage

P

About Envisage Follow Envisage Dissemination Login

Proving that Android’s, Java's and
Python’s sorting algorithm is broken (and
showing how to fix it)

O February 24,2015 @ Envisage Written by Stijn de Gouw. a $s

Tim Peters developed the Timsort hybrid sorting algorithm in 2002. It is a clever combina-
tion of ideas from merge sort and insertion sort, and designed to perform well on real world
data. TimSort was first developed for Python, but later ported to Java (where it appears as
java.util.Collections.sort and java.util.Arrays.sort) by Joshua Bloch (the designer of Java
Collections who also pointed out that most binary search algorithms were broken). TimSort
is today used as the default sorting algorithm for Android SDK, Sun’s JDK and OpenJDK.
Given the popularity of these platforms this means that the number of computers, cloud
services and mobile phones that use TimSort for sorting is well into the billions.

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it

31
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Timsort bug (May 2018)

Details
Type:
Status:
Priority:
Resolution:
Affects Version/s:
Fix Version/s:
Component/s:
Labels:

Subcomponent:

JDK / JDK-8203864
1 Execution error in Java's Timsort

B Bug
ElP3
Fixed
None

11
core-libs

None

java.util:collections

Introduced In Version: 6

Resolved In Build:

b20

Description

Carine Pivoteau wrote:

While working on a proper complexity analysis of
the algorithm, we realised that there was an error in
the last paper reporting such a bug (http://envisage-
project.eu/wp-content/uploads/2015/02/sorting.pdf).
This implies that the correction implemented in the
Java source code (changing Timsort stack size) is
wrong and that it is still possible to make it break.
This is explained in full details in our analysis:
https://arxiv.org/pdf/1805.08612.pdf.

We understand that coming upon data that actually
causes this error is very unlikely, but we thought
you’d still like to know and do something about it.
As the authors of the previous article advocated for,
we strongly believe that you should consider
modifying the algorithm as explained in their article
(and as was done in Python) rather than trying to fix
the stack size.

https://bugs.openjdk.java.net/browse/JDK-8203864

32
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Sorting summary

selection

inplace?

v

stable?

bn2

Yonlgn

average

hn2

lin2

nlgn

nlgn

nlgn

remarks

2n2 n exchanges

use for small n

Yan?
or partially ordered
: nlog n guarantee;
n n
& stable
improves mergesort
nlge when pre-existing order
nlgn holy sorting grail

Q =# runs
(proved in August 2018)
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Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms
for solving a particular problem X.

Model of computation. Allowable operations.

Cost model. Operation counts.

Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

\ lower bound ~ upper bound

model of computation comparison tree «—— can access information
only through compares
cost model # compares (e.g., Java Comparable framework)
upper bound ~ n lg n from mergesort
lower bound ?
optimal algorithm ?

complexity of sorting

35



Comparison tree (for 3 distinct keys a, b, and ¢)

height of pruned comparison tree =

Yyes worst-case number of compares

code between compares
(e.g., sequence of exchanges)

b<c o2

yes

no yes no

a<c b<c

yes

yes

each reachable leaf corresponds to one (and only one) ordering;
exactly one reachable leaf for each possible ordering

36



Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must make at least
lg(n!) ~ nlgn compares in the worst case.

Pf.
« Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height 4 of pruned comparison tree.
* Binary tree of height # has < 2" leaves.
- n! different orderings = n! reachable leaves.

n! reachable leaves

< 2" leaves

37



Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must make at least
lg(n!) ~ nlgn compares in the worst case.

Pf.
« Assume array consists of n distinct values a; through a,.
* Worst-case number of compares = height & of pruned comparison tree.
* Binary tree of height # has < 2" leaves.
- n! different orderings = n! reachable leaves.

2" > #reachable leaves = n!

= h > lg(n!)

~nlgn

T

Stirling’s formula

38



Complexity of sorting

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for X.
Lower bound. Proven limit on cost guarantee of all algorithms for X.
Optimal algorithm. Algorithm with best possible cost guarantee for X.

model of computation comparison tree
cost model # compares
upper bound ( ~nlgn )
lower bound ( ~nlgn )
optimal algorithm (mergesort)

complexity of sorting

First goal of algorithm design: optimal algorithms.

39



Complexity results in context

Compares? Mergesort is optimal with respect to number compares.
Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.
Ex. Design sorting algorithm that guarantees ~ ! nlgn compares?
Ex. Design sorting algorithm that is both time- and space-optimal?

40



Commercial break

Q. Why doesn’t this Skittles sorter violate the sorting lower bound?

https://www.youtube.com/watch?v=tSEHDBSynVo

41
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Complexity results in context (continued)

Lower bound may not hold if the algorithm can take advantage of:

« The initial order of the input array.
Ex: insertion sort requires only a linear number of compares on

partially sorted arrays.

« The distribution of key values.
Ex: 3-way quicksort requires only a linear number of compares on

arrays with a constant number of distinct keys. [stay tuned]

« The representation of the keys.
Ex: radix sorts require no key compares — they access the data

via character/digit compares. [stay tuned]

42



BIG O NOTATION (AND COUSINS)

hn2

Tilde leading term ~lhn2
n2+22nlogn+3n
Yon?
Big Theta order of growth O(n?) 10 2
Sn2+22nlogn+3n
10n2
Big O upper bound O(n?2) 100 n
22nlogn+3n
Yon?
Big Omega lower bound Q(n2) ns

n3+22nlogn+3n
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SORTING LOWER BOUND

Interviewer. Give a formal description of the sorting lower bound
for sorting an array of n elements.

44
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SORTING A LINKED LIST

Problem. Given a singly linked list, rearrange its nodes in sorter order.

Version 1. Linearithmic time, linear extra space.
Version 2. Linearithmic time, logarithmic (or constant) extra space.

first
!

input S5 — 5 6k —5 26 —5 T —5 36 —5 46 —5

first
!

sorted 280 35 3% — 3 4 — 3 S — 5 O — 5 T — 5

47



