1.5 **UNION-FIND**

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Steps to developing a usable algorithm to solve a computational problem.

1. Model the problem
2. Design an algorithm
3. Efficient? (Yes or No)
 - Yes: Solve the problem
 - No: Understand why not and try again
1.5 **Union–find**

- *union–find data type*
- *quick-find*
- *quick-union*
- *improvements*
- *applications*
Union–find data type

Disjoint sets. A collection of sets; each element in exactly one set.

Find. Return a “canonical” element in the set containing p?

Union. Merge the set containing p with the set containing q.

\[
\text{find}(1) = \text{find}(4) = \text{find}(5) = 4
\]

\[
\{ 0 \} \{ 1, 4, 5 \} \{ 2, 3, 6, 7 \}
\]

8 elements, 3 disjoint sets

\[
\text{union}(2, 5)
\]

\[
\{ 0 \} \{ 1, 2, 3, 4, 5, 6, 7 \}
\]

2 disjoint sets

Simplifying assumption. The n elements are named $0, 1, \ldots, n-1$.
Union–find data type (API)

Goal. Design an efficient union–find data type.

- Number of elements n can be huge.
- Number of operations m can be huge.
- Union and find operations can be intermixed.

```java
public class UF {

    UF(int n) {
        // initialize union–find data structure with n singleton sets (0 to n – 1)
    }

    void union(int p, int q) {
        // merge sets containing elements p and q
    }

    int find(int p) {
        // canonical element in set containing p (0 to n – 1)
    }

```
An application: dynamic connectivity

Given n vertices, support two operations:
- Add edge: directly connect two vertices with an edge.
- Connection query: is there a path connecting two vertices?

(add edge 4–3
add edge 3–8
add edge 6–5
add edge 9–4
add edge 2–1
are 8 and 9 connected? ✔️
are 5 and 7 connected? ✗
add edge 5–0
add edge 7–2
add edge 6–1
add edge 1–0
are 5 and 7 connected? ✔️)
A larger connectivity example

Q. Is there a path connecting vertices v and w?

Finding a path is a slightly harder problem. (Stay tuned for graph algorithms in Chapter 4)

A. Yes.
Modeling the dynamic-connectivity problem

Q. How to model the dynamic-connectivity problem using union–find?
A. Maintain disjoint sets that correspond to connected components.

Connected component. Maximal set of vertices that are mutually connected.

\[
\begin{align*}
\{0\} & \quad \{1, 4, 5\} & \quad \{2, 3, 6, 7\} \\
3 \text{ connected components} & \\
3 \text{ disjoint sets}
\end{align*}
\]
Modeling the dynamic-connectivity problem

Q. How to model the dynamic-connectivity problem using union–find?
A. Maintain disjoint sets that correspond to connected components.
 • Add edge between vertices \(v \) and \(w \).
 • Are vertices \(v \) and \(w \) connected?

add edge 2–5

3 connected components

are vertices 5 and 6 connected?

2 connected components

union(2, 5)

\{ 0 \} \{ 1, 4, 5 \} \{ 2, 3, 6, 7 \}

3 disjoint sets

find(5) == find(6) ✔

\{ 0 \} \{ 1, 2, 3, 4, 5, 6, 7 \}

2 disjoint sets
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Quick-find [eager approach]

Data structure.
- Integer array $\text{id}[]$ of length n.
- Interpretation: $\text{id}[p]$ is canonical element in the set containing p.

```
0 1 2 3 4 5 6 7 8 9
\text{id}[] = [0, 1, 1, 8, 8, 0, 0, 1, 8, 8]
```

- $\text{id}[i] = 0$:
 - $\{0, 5, 6\}$

- $\text{id}[i] = 1$:
 - $\{1, 2, 7\}$

- $\text{id}[i] = 8$:
 - $\{3, 4, 8, 9\}$

3 disjoint sets

Q. How to implement $\text{find}(p)$?
A. Easy, just return $\text{id}[p]$.
Quick-find [eager approach]

Data structure.

- Integer array $id[]$ of length n.
- Interpretation: $id[p]$ is canonical element in the set containing p.

```
union(6, 1)
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$id[]$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

problem: many values can change

Q. How to implement $\text{union}(p, q)$?
A. Change all entries whose identifier equals $id[p]$ to $id[q]$ (or vice versa).
Quick-find: Java implementation

```java
class QuickFindUF {
    private int[] id;

    public QuickFindUF(int n) {
        id = new int[n];
        for (int i = 0; i < n; i++)
            id[i] = i;
    }

    public int find(int p) {
        return id[p];
    }

    public void union(int p, int q) {
        int pid = id[p];
        int qid = id[q];
        for (int i = 0; i < id.length; i++)
            if (id[i] == pid) id[i] = qid;
    }
}
```

- set id of each element to itself (n array accesses)
- return the id of p (1 array access)
- change all entries with id[p] to id[q] ($n + 2$ to $2n + 2$ array accesses)

[See the implementation on AlgoWeb](https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html)
Quick-find is too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

number of array accesses (ignoring leading constant)

Union is too expensive. Processing a sequence of n union operations on n elements takes more than n^2 array accesses.
1.5 **Union–Find**

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Quick-union [lazy approach]

Data structure.
- Integer array `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.
- Interpretation: elements in one tree correspond to one set.

Q. How to implement `find(p)` operation?
A. Return root of tree containing `p`.
Quick-union quiz

Data structure.
- Integer array `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.
- Interpretation: elements in one tree correspond to one set.

How to implement `union(3, 5)`?

A. Set parent of 3 to 5.
B. Set parent of 9 to 5.
C. Set parent of 9 to 6.
D. Set parents of 2, 3, 4, and 9 each to 6.
Quick-union [lazy approach]

Data structure.

- Integer array `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.
- Interpretation: elements in one tree correspond to one set.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

union(3, 5)

Q. How to implement `union(p, q)`?
A. Set parent of `p`'s root to parent of `q`'s root.
Quick-union [lazy approach]

Data structure.
- Integer array `parent[]` of length `n`, where `parent[i]` is parent of `i` in tree.
- Interpretation: elements in one tree correspond to one set.

Q. How to implement `union(p, q)`?

A. Set parent of `p`’s root to parent of `q`’s root.
Quick-union demo
Quick-union: Java implementation

```java
public class QuickUnionUF {
    private int[] parent;

    public QuickUnionUF(int n) {
        parent = new int[n];
        for (int i = 0; i < n; i++)
            parent[i] = i;
    }

    public int find(int p) {
        while (p != parent[p])
            p = parent[p];
        return p;
    }

    public void union(int p, int q) {
        int r1 = find(p);
        int r2 = find(q);
        parent[r1] = r2;
    }
}
```

- set parent of each element to itself \((n\text{ array accesses})\)
- chase parent pointers until reach root \((\text{depth of } p\text{ array accesses})\)
- change root of \(p\) to point to root of \(q\) \((\text{depth of } p\text{ and } q\text{ array accesses})\)
Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

number of array accesses (ignoring leading constant)

Quick-find defect.
- Union too expensive (more than n array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.
- Trees can get tall.
- Find too expensive (could be more than n array accesses).
1.5 Union–Find

- union–find data type
- quick-find
- quick-union
- improvements
- applications
Weighted quick-union quiz

When merging two trees, which strategy is most effective?

A. Link the root of the *smaller* tree to the root of the *larger* tree.
B. Link the root of the *larger* tree to the root of the *smaller* tree.
C. Link the root of the *shorter* tree to the root of the *taller* tree.
D. Link the root of the *taller* tree to the root of the *shorter* tree.

![Diagram of two trees](image)

shorter and larger tree
(height = 2, size = 14)

taller and smaller tree
(height = 5, size = 9)
Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of elements).
- Always link root of smaller tree to root of larger tree.

[Diagram showing quick-union and weighted quick-union trees]

- Quick-union: might put the larger tree lower.
- Weighted: always chooses the better alternative.
Weighted quick-union quiz

Suppose that the parent[] array during weighted quick-union is:

```
parent[] = [0, 0, 0, 0, 0, 0, 7, 8, 8, 8]
```

Which parent[] entry changes during union(2, 6)?

A. parent[0]
B. parent[2]
C. parent[6]
D. parent[8]
Weighted quick-union demo
Quick-union vs. weighted quick-union: larger example

Quick-union and weighted quick-union (100 sites, 88 `union()` operations)

average distance to root: 5.11

average distance to root: 1.52
Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array size[i] to count number of elements in the tree rooted at i, initially 1.

- **Find:** identical to quick-union.
- **Union:** link root of smaller tree to root of larger tree; update size[].

```java
public void union(int p, int q)
{
    int r1 = find(p);
    int r2 = find(q);
    if (r1 == r2) return;

    if (size[r1] >= size[r2])
    {
        int temp = r1;  r1 = r2;  r2 = temp;
    }

    parent[r1] = r2;
    size[r2] += size[r1];
}
```

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html
Running time.
- Find: takes time proportional to depth of p.
- Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\lg n$. in computer science, \lg means base-2 logarithm

$n = 10$
$\text{depth}(x) = 3 \leq \lg n$
Weighted quick-union analysis

Running time.
- Find: takes time proportional to depth of p.
- Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\lg n$.

Pf. What causes the depth of element x to increase?
Increases by 1 when root of tree T_1 containing x is linked to root of tree T_2.
- The size of the tree containing x at least doubles since $|T_2| \geq |T_1|$.
- Size of tree containing x can double at most $\lg n$ times. Why?
Weighted quick-union analysis

Running time.

- **Find**: takes time proportional to depth of p.
- **Union**: takes constant time, given two roots.

Proposition. Depth of any node x is at most $\lg n$.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>initialize</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>weighted quick-union</td>
<td>n</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>

number of array accesses (ignoring leading constant)
Summary

Key point. Weighted quick-union makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>(mn)</td>
</tr>
<tr>
<td>quick-union</td>
<td>(mn)</td>
</tr>
<tr>
<td>weighted quick-union</td>
<td>(n + m \log n)</td>
</tr>
<tr>
<td>(QU +) path compression</td>
<td>(n + m \log n)</td>
</tr>
<tr>
<td>weighted (QU +) path compression</td>
<td>(n + m \log^* n)</td>
</tr>
</tbody>
</table>

order of growth for \(m \) union–find operations on a set of \(n \) elements

Ex. [10^9 unions and finds with 10^9 elements]

- Weighted quick-union reduces time from 30 years to 6 seconds.
- Supercomputer won’t help much; good algorithm enables solution.