
COS 226 Algorithms and Data Structures Fall 2018

Midterm

This exam has 10 questions (including question 0) worth a total of 55 points. You have 80 minutes.
This exam is preprocessed by a computer when grading, so please write darkly and write your
answers inside the designated spaces.

Policies. The exam is closed book, except that you are allowed to use a one-page cheatsheet
(8.5-by-11 paper, one side, in your own handwriting). Electronic devices are prohibited.

Discussing this exam. Discussing the contents of this exam before solutions have been posted
is a violation of the Honor Code.

This exam. Do not remove this exam from this room. In the space provided, write your name
and NetID. Also, mark your exam room and precept number. Finally, write and sign the Honor
Code pledge. You may fill in this information now.

Name:

NetID:

Course: COS 226

Exam room: LTL 003 JAD A08 JAD A09 LEW 122 LEW 134 Other

#
P01 P01A P02 P02A P03 P03A P04 P05

#Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature

2 PRINCETON UNIVERSITY

0. Initialization. (1 point)

In the space provided on the front of the exam, write your name and NetID; mark your exam
room and precept number; write and sign the Honor Code pledge.

1. Memory. (4 points)

Suppose that you implement a symbol table (with int keys and double values) using a binary
search tree with the following data type:

public class BinarySearchTree {

private Node root; // root of BST

private int n; // number of nodes in BST

private static class Node {

private Node left; // left subtree

private Node right; // right subtree

private int key; // symbol table key

private double value; // symbol table value

}

...

}

Using the 64-bit memory cost model from lecture and the textbook, how much memory does
a BinarySearchTree object use as a function of the number of key–value pairs n? Count all
referenced memory, including the keys and values. Use tilde notation to simplify your answer.

∼ bytes

Recall: the extra 8-byte overhead for inner classes is needed only for objects from non-static
nested classes.

COS 226 MIDTERM, FALL 2018 3

2. Five sorting algorithms. (5 points)

The leftmost column contains an array of 24 integers to be sorted; the rightmost column
contains the integers in sorted order; the other columns are the contents of the array at some
intermediate step during one of the five sorting algorithms listed below. Match each algorithm
by writing its number in the box under the corresponding column. Use each number once.

63 44 11 19 11 81 11

21 21 19 21 19 79 19

19 19 21 32 21 63 21

32 32 25 45 29 60 25

45 45 29 60 31 71 29

60 60 31 63 32 29 31

31 31 32 11 44 48 32

79 25 44 31 45 45 44

48 48 45 48 48 52 45

11 11 48 71 60 50 48

71 50 50 79 63 67 50

88 52 52 88 71 21 52

29 29 63 29 79 25 60

99 63 99 99 88 31 63

89 89 89 89 89 19 67

44 99 79 44 99 44 71

86 86 86 86 86 11 79

52 88 88 52 52 32 81

92 92 92 92 92 86 86

50 71 71 50 50 88 88

25 79 60 25 25 89 89

67 67 67 67 67 92 92

93 93 93 93 93 93 93

81 81 81 81 81 99 99

0 6

(0) Original array

(1) Selection sort

(2) Insertion sort

(3) Mergesort
(top-down)

(4) Heapsort

(5) Quicksort
(standard, no shuffle)

(6) Sorted array

4 PRINCETON UNIVERSITY

3. Analysis of algorithms. (6 points)

Consider an organ-pipe array that contains two copies of the integers 1 through n, first in
ascending order, then in descending order. For example, here is the array when n = 8:

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

Note that the length of the array is 2n, not n.

(a) How many compares does selection sort make to sort the array as a function of n?
Use tilde notation to simplify your answer.

∼ compares

(b) How many compares does insertion sort make to sort the array as a function of n?
Use tilde notation to simplify your answer.

∼ compares

(c) How many compares does mergesort make to sort the array as a function of n?
Assume n is a power of 2. Use tilde notation to simplify your answer.

∼ compares

COS 226 MIDTERM, FALL 2018 5

4. Binary heaps. (4 points)

Consider the following maximum-oriented binary heap.

 52

Midterm, Fall 2018 (Heap question)

16

14

6

3 1

9

7 4

13

12

11 10

8

2 5

(a) Suppose that you insert the key 15 into the binary heap.
Mark all keys that will be involved in a compare.

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ∎ ◻

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(b) Suppose that you delete-the-maximum key from the original binary heap.
Mark all keys that will be involved in a compare.

◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

6 PRINCETON UNIVERSITY

5. Red–black BSTs. (6 points)

Suppose that you insert the key 23 into the following left-leaning red–black BST:

Midterm, Fall 2018

4

2

10

14

8

red link

6

24

18

16

20

28

22

12

26

Give the sequence of 5 elementary operations (color flips and rotations) that result.

operation 1 operation 2 operation 3 operation 4 operation 5

key 22

color flip # # # #
rotate left # # # # #

rotate right # # # # #

Examples of color flips and rotations (for reference):

Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4Midterm, Spring 2015

8

3
rotate 8 right

T3
3

8
rotate 3 left

3

81

color flip 3

T2T1

T1

T3T2

T1 T2 T3 T4

3

81

T1 T2 T3 T4

COS 226 MIDTERM, FALL 2018 7

6. Data structure and algorithm properties. (7 points)

Match each quantity on the left by writing the letter of the best matching order of growth
at right. You may use each letter once, more than once, or not at all. Assume that each
algorithm is the standard version, presented in this course.

Expected number of array accesses to perform one computational
experiment in an n-by-n percolation system (i.e., repeatedly
open random sites under the system percolates) using quick find.

Maximum number of array accesses to perform an intermixed
sequence of n enqueue, dequeue, and sample operations in an
initially empty randomized queue that is implemented efficiently
with a resizing array.

Maximum number of compares to count the number of matching
terms in any autocomplete query. Assume the terms are already
sorted by query key.

Maximum number of boards objects created to solve an n-by-n
slider puzzle using the A* algorithm with the Manhattan priority
function.

Maximum number of compares to perform an intermixed se-
quence of n insert and delete-the-max operations in an initially
empty binary heap.

Minimum number of x- and y-coordinate compares to perform n
consecutive insert operations in an initially empty 2d-tree. As-
sume the n points to be inserted are all distinct.

Maximum number of array accesses to perform an intermixed
sequence of n insert and search operations in an initially empty
linear-probing hash table of capacity m = 2n. Do not make any
assumptions about the hash function.

A. constant

B. logn

C. n

D. n logn

E. n2

F. n2 logn

G. n3

H. n4

I. exponential

8 PRINCETON UNIVERSITY

7. System sort. (5 points)

The Java 10 system sort uses a combination of insertion sort, Timsort, and dual-pivot quick-
sort. For each of the following properties, mark each algorithm that possesses that property.

Recall: Timsort is an optimized version of bottom-up mergesort that forms subarrays by iden-
tifying natural runs of consecutive ordered elements.

insertion sort
dual-pivot
quicksort

Timsort

Stable. ◻ ◻ ◻

In-place. ◻ ◻ ◻

At most ∼ n log2 n compares. ◻ ◻ ◻

Linear number of compares on arrays
with only 3 distinct keys.

◻ ◻ ◻

Linear number of compares on arrays
in ascending order.

◻ ◻ ◻

COS 226 MIDTERM, FALL 2018 9

8. Duplicate in two arrays. (8 points)

Given two integer arrays a[] and b[], find an integer that appears in both arrays (or report
that no such integer exists). Let m and n denote the lengths of a[] and b[], respectively,
and assume that m ≤ n.

Here are the performance requirements:

• Space: the amount of extra space (besides a[] and b[]) must be constant. It is fine to
modify a[] and b[].

• Time: the order of growth of the running time must be n logm in the worst case.

Give a crisp and concise English description of your algorithm in the space below. Your
answer will be graded for correctness, efficiency, and clarity. Partial credit for n logn time
and logn extra space.

10 PRINCETON UNIVERSITY

9. Data structure design. (9 points)

Create a Duo data type that supports adding integers to (and deleting integers from) either
of two unordered lists (with duplicates allowed) and checking whether any integer appears in
both lists. To do so, implement this API:

Midterm, Fall 2018

public class Duo

Duo() create an empty duo data type

void addToList1(int x) add the integer to the first list

void addToList2(int x) add the integer to the second list

void deleteFromList1(int x) delete the integer from the first list

void deleteFromList2(int x) delete the integer from the second list

boolean hasDuplicate() does any integer appear in both lists?

Here is an example:

Duo duo = new Duo(); // [] []

duo.addToList1(23); // [23] []

duo.addToList1(45); // [23, 45] []

duo.addToList2(56); // [23, 45] [56]

duo.addToList2(56); // [23, 45] [56, 56]

duo.hasDuplicate(); // false

duo.addToList2(23); // [23, 45] [56, 56, 23]

duo.hasDuplicate(); // true

duo.deleteFromList2(56); // [23, 45] [56, 23]

duo.deleteFromList1(23); // [45] [56, 23]

duo.hasDuplicate(); // false

Your answer will be graded for correctness, efficiency, and clarity (but not precise Java syn-
tax). For full credit, each operation must take constant time (subject to standard technical
assumptions that we have seen in this course). For most of the credit, implement all operations
except deletion.

COS 226 MIDTERM, FALL 2018 11

(a) Declare the Java instance variables for your Duo data type using Java code. You may
use any of the data types that we have considered in this course (either algs4.jar or
java.util versions).

public class Duo {

}

(b) Implement addToList1(). We’ll assume the code for addToList2() is symmetric.

// add x to the first list

public void addToList1(int x) {

}

12 PRINCETON UNIVERSITY

(c) Implement hasDuplicate().

// does any integer appear in both lists?

public boolean hasDuplicate() {

}

(d) Implement deleteFromList1(). You may assume that the integer x appears at least
once in the specified list; if x appears more than once, delete only one copy. We’ll assume
the code for deleteFromList2() is symmetric.

// delete x from the first list

public void deleteFromList1(int x) {

}

COS 226 MIDTERM, FALL 2018 13

This page is intentionally blank. You may use this page for scratch work but do not remove
it from the exam.

14 PRINCETON UNIVERSITY

This page is intentionally blank. You may use this page for scratch work but do not remove
it from the exam.

