

Princeton University
COS 217: Introduction to Programming Systems

Fall 2018 Midterm Exam Preparation
Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This is a
nonexhaustive list of topics that were covered. Topics that are crossed out will not appear on the midterm exam
but may appear on the final exam.

1. Number Systems

• The binary and hexadecimal number systems
• Finite representation of unsigned integers

• Operations on unsigned integers
• Finite representation of signed integers

• Two's complement
• Operations on signed integers

2. C Programming

• The program preparation process: preprocess, compile, assemble, link
• Program structure: multi-file programs using header files
• Process memory layout: text, stack, heap, rodata, data, bss sections
• Data types
• Variable declarations and definitions
• Variable scope, linkage, and duration/extent
• Constants: #define, constant variables, enumerations
• Operators
• Statements
• Function declarations and definitions
• Pointers and arrays

• Call-by-reference, arrays as parameters, strings
• Command-line arguments

• Input/output facilities: getchar(), fgetc(), putchar(), fputc(), gets(), fgets(), puts(),
fputs(), scanf(), fscanf(), printf(), fprintf()

• Structures
• Dynamic memory management

• malloc() and free()
• Common errors: dereference of dangling pointer, memory leak, double free

• Abstract data types; opaque pointers
• Generic data structures and functions

• Void pointers
• Function pointers and function callbacks

• Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large
• Testing

• Test Coverage: statement, path, boundary, stress, regression
• Internal testing techniques: validate parameters, check invariants, check function return values, change

code temporarily, leave testing code intact
• External Testing
• Unit testing

• Building
• Separate independent paths before link
• Motivation for make, make fundamentals, macros, abbreviations, pattern rules

• Program and programming style
• Bottom-up design, top-down design, least-risk design

• Debugging
• General heuristics for debugging: understand error messages, think before writing, look for familiar bugs,

divide and conquer, add more internal tests, display output, use a debugger, focus on recent changes
• Heuristics for debugging dynamic memory management: look for common DMM bugs, diagnose seg faults

using gdb, manually inspect malloc(), calls, comment-out free() calls, use Meminfo, use Valgrind
• Data structures and algorithms

• Linked lists
• Hash tables: hashing algorithms, defensive copies, key ownership
• Arrays
• Strings

• Modules and interfaces
• Abstract data types, specifications, reasoning about client code, representation vs. abstraction,

underspecified behavior, ADT modules in C
• Module qualities: encapsulates data, is consistent, has a minimal interface, detects and handles/reports

errors, establishes contracts, has strong cohesion, has weak coupling
• Performance Improvement

• Case study: buzz
• When to improve performance
• Improving execution (time) efficiency: do timing studies, identify hot spots, use a better algorithm or data

structure, enable compiler speed optimization, tune the code
• Improving memory (space) efficiency: use a smaller data type, compute instead of storing, enable

compiler size optimization

4. Applications

• Decommenting
• Lexical analysis using finite state automata
• String manipulation
• Symbol tables, linked lists, hash tables
• Dynamically expanding arrays

5. Tools: The Linux/GNU programming environment

• Linux, bash, emacs, gcc, gdb, make, OProfile

Readings

As specified by the course "Schedule" web page...

Required:

• C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1
• Computer Systems (Bryant & O'Hallaron): 1

Recommended:

• C Programming (King): 21
• Computer Systems (Bryant & O'Hallaron): 2, 5.1-5
• The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
• Unix Tutorial for Beginners (website)
• GNU Emacs Tutorial (website)
• Linux Pocket Guide (Barrett) pp. 166-179
• Deterministic Finite Automaton Wikipedia article (website)
• GNU GDB Tutorial (website)
• GNU Make Tutorial (website)
• oprofile Manual (website)

