
Princeton University
COS 217: Introduction to Programming Systems

GDB Tutorial and Reference

Part 1: Tutorial

This tutorial describes how to use a minimal subset of the gdb debugger. For more
information see Part 2 of this document and the online gdb tutorial at
http://sourceware.org/gdb/current/onlinedocs/gdb/.

The tutorial assumes that you've created files named testintmath.c, intmath.h,
and intmath.c in your working directory, containing the (version 4) program recently
discussed in precepts. Those files are available through the course Schedule Web page.

Introduction

Suppose you're developing the testintmath (version 4) program. Further suppose
that the program preprocesses, compiles, assembles, and links cleanly, but produces
incorrect results at run-time. What can you do to debug the program?

One approach is temporarily to insert calls to printf(...) or
fprintf(stderr, ...) throughout the program to get a sense of the flow of
control and the values of variables at critical points. That's fine, but often is
inconvenient.

An alternative is to use gdb. gdb is a powerful debugger. It allows you to set
breakpoints in your program, step through your executing program one line at a time,
examine the values of variables at breakpoints, examine the function call stack, etc.

Building

To prepare to use gdb, build your program with the -g option:

$ gcc217 -g testintmath.c intmath.c -o testintmath

The -g option tells gcc217 to place extra information in the testintmath file that
gdb uses.

It's a common error to forget to specify the -g option when building in preparation for
using gdb.

Page 1 of 6

Running gdb

The next step is to run gdb. You can run gdb directly from the shell, but it's much better
to run it from within emacs. So launch emacs, with no command-line arguments:

$ emacs

Now call the emacs gdb function via these keystrokes:

<Esc key> x gdb <Enter key>

The emacs editor displays the message:

Run gud-gdb (like this): gdb -–fullname

followed by the name of some executable binary file. If that name is not
testintmath, then use the backspace key to delete it, and type testintmath.
Then type the Enter key.

At this point you're executing gdb from within emacs. gdb is displaying its (gdb)
prompt.

Running Your Program

Issue the run command to run the program:

(gdb) run

Enter 8 as the first integer, and 12 as the second integer. gdb runs the program to
completion, indicating that the Program exited normally.

File redirection is specified as part of the run command. For example, the command
run < somefile runs the program, redirecting its standard input to somefile.

Command-line arguments are specified as part of the run command. For example, the
command run arg1 arg2 runs the program with command-line arguments arg1
and arg2. The testintmath program ignores its command-line arguments; of
course other programs do not.

Using Breakpoints

Set a breakpoint at the beginnings of some functions using the break command:

(gdb) break main
(gdb) break IntMath_gcd

Page 2 of 6

Another way to set a breakpoint is by specifying a file name and line number separated
by a colon, for example, break intmath.c:20.

Then run the program:

(gdb) run

gdb pauses execution near the beginning of main(). It opens a second window in
which it displays your source code, with an arrow pointing to the about-to-be-executed
line.

Issue the continue command to tell command gdb to continue execution past the
breakpoint:

(gdb) continue

gdb continues past the breakpoint at the beginning of main(), and execution is paused
at a call of scanf(). Enter 8 as the first number. Execution is paused at the second call
of scanf(). Enter 12 as the second number. gdb is paused at the beginning of
IntMath_gcd().

Then issue another continue command:

(gdb) continue

Note that gdb is paused, again, at the beginning of IntMath_gcd(). (Recall the
IntMath_gcd() is called twice: once by main(), and once by IntMath_lcm().)

While paused at a breakpoint, issue the kill command to stop execution:

(gdb) kill

Type y to confirm that you want gdb to stop execution.

Issue the clear command to get rid of a breakpoint:

(gdb) clear IntMath_gcd

At this point only one breakpoint remains: the one at the beginning of main().

Stepping Through the Program

Run the program again:

(gdb) run

Page 3 of 6

Execution pauses at the beginning of main(). Issue the next command to execute the
next line of your program:

(gdb) next

Continue issuing the next command repeatedly until the program ends.

Run the program again:

(gdb) run

Execution pauses at the beginning of main(). Issue the step command to execute the
next line of your program:

(gdb) step

Continue issuing the step command repeatedly until the program ends. Is the difference
between next and step clear? The next command tells gdb to execute the next line,
while staying at the same function call level. In contrast, the step command tells gdb
to step into a called function.

Examining Variables

Set a breakpoint at the beginning of IntMath_gcd():

(gdb) break IntMath_gcd

Run the program until execution reaches that breakpoint:

(gdb) run
(gdb) continue

Now issue the print command to examine the values of the parameters of
IntMath_gcd():

(gdb) print iFirst
(gdb) print iSecond

In general, when paused at a breakpoint you can issue the print command to examine
the value of any expression containing variables that are in scope.

Examining the Call Stack

While paused at IntMath_gcd(), issue the where command:

(gdb) where

Page 4 of 6

In response, gdb displays a call stack trace. Reading the output from bottom to top gives
you a trace from a specific line of the main() function, through specific lines of
intermediate functions, to the about-to-be-executed line.

The where command is particularly useful when your program is crashing via a
segmentation fault error at runtime. When that occurs, try to make the error occur within
gdb. Then, after the program has crashed, issue the where command. Doing so will
give you a good idea of which line of your code is causing the error.

Quitting gdb

Issue the quit command to quit gdb:

(gdb) quit

Then, as usual, type:

<Ctrl-x> <Ctrl-c>

to exit emacs.

Command Abbreviations

The most commonly used gdb commands have one-letter abbreviations (r, b, c, n, s,
p). Also, pressing the Enter key without typing a command tells gdb to reissue the
previous command.

Page 5 of 6

Part 2: Reference

gdb [-d sourcefiledir] [-d sourcefiledir] ... program [corefile] Run gdb from a shell
ESC x gdb [-d sourcefiledir] [-d sourcefiledir] ... program Run gdb within Emacs

Miscellaneous
quit Exit gdb.
directory [dir1] [dir2] ... Add directories dir1, dir2, ... to the list of directories searched for source files, or clear

the directory list.
help [cmd] Print a description of command cmd.

Running the Program
run [arg1],[arg2] … Run the program with command-line arguments arg1, arg2, ...
set args arg1 arg2 ... Set the program's command-line arguments to arg1, arg2, ...
show args Print the program's command-line arguments.

Using Breakpoints
info breakpoints Print a list of all breakpoints.
break [file:]linenum Set a breakpoint at line linenum in file file.
break [file:]fn Set a breakpoint at the beginning of function fn in file file.
condition bpnum expr Break at breakpoint bpnum only if expression expr is non-zero (TRUE).
commands [bpnum] cmds Execute commands cmds whenever breakpoint bpnum is hit.
continue Continue executing the program.
kill Stop executing the program.
delete [bpnum1][,bpnum2]... Delete breakpoints bpnum1, bpnum2, ..., or all breakpoints.
clear [[file:]linenum] Clear the breakpoint at linenum in file file, or the current breakpoint.
clear [[file:]fn] Clear the breakpoint at the beginning of function fn in file file, or the current

breakpoint.
disable [bpnum1][,bpnum2]... Disable breakpoints bpnum1, bpnum2, ..., or all breakpoints.
enable [bpnum1][,bpnum2]... Enable breakpoints bpnum1, bpnum2, ..., or all breakpoints.

Stepping through the Program
next "Step over" the next line of the program.
step "Step into" the next line of the program.
finish "Step out" of the current function.

Examining Variables
print expr Print the value of expression expr.
print ['file'::]var Print the value of variable var as defined in file file. (file is used to resolve static

variables.)
print [function::]var Print the value of variable var as defined in function function. (Function is used to

resolve static variables.)
printf format, expr1, expr2, … Print the values expressions expr1, expr2, ... using the specified format string.
whatis var Print the type of variable var.
ptype t Print the definition of type t.
info display Print the display list.
display expr At each break, print the value of expression expr.
undisplay displaynum Remove displaynum from the display list.

Examining the Call Stack
where Print the call stack.
frame Print the top of the call stack.
up Move the context toward the bottom of the call stack.
down Move the context toward the top of the call stack.

Working with Signals
info signals Print a list of all signals that the operating system makes available.
handle sig action1 [action2 ...] When GDB receives signal sig, it should perform actions action1, action2, ... Valid

actions are nostop, stop, print, noprint, pass, and nopass.
signal sig Send the program signal sig.

Copyright © 2018 by Robert M. Dondero, Jr.

Page 6 of 6

