Fast integer cube roots

"Princeton University v 1 (v)
Computer Science 217: Introduction to Programming Systems 3“:-45 Prog rammlng Cha"enge M
Implement a correct and fast integer cube-root function.
Correct: On any input (not just the “test harness”), it must
have behavior indistinguishable from this reference
implementation:
The Ethlcs Of #include <math.h>
H #include "root.h"
Extreme Performance Tuning s T) &
return (int)cbrt((double) 1);
(excerpt) N
Andrew W Appel Fast: When connected to the “test harness” driver, the
program should run as fast as possible.
This challenge was designed by Guy J. Jacobson *81
1) in 1995 when he was teaching COS 333 at Princeton University 2/
4 N 7 N

Performance measurement

root.h
int quickroot(int); slowroot.c

#include <math.h>
#include "root.h"

int quickroot(int i) {
return (int)cbrt((double) i);

testharness.c 3 X

#include <stdlib.h>
#include “root.h™

main (int argc, char *argv[]) { Floating-point cube root

(On a 1995 computer, much slower than today’s)

testharness.o + slowroot.o: 20 seconds

testharness.o + noroot.o: 2 seconds
noroot.c

#include <math.h>
#include "root.h"

int quickroot(int i) {

int i, j; from math.h return O;
srandom (atoi (argv[1])); }
f i=0;i 0000000; i
Orj (; quick:o:tl(.—andom();?ﬂ Note: noroot.c is really fast, but is not correct, that is, fails
exit (0); “on any input, it must have behavior indistinguishable from
} >/ this reference implementation” Y
4 N N
Challenge: g How to do it g
root.h return (int)cbrt((double) i);

int quickroot(int);

fastroot.c

#include “root.h™
int quickroot(int i) {

/* something really fast */

S/

N

b the math library?

P f 7
U Newton's method?

How can ya beat
the highly tuned
cbrt function from

I dunno, use
Newton's method?

b

P

But doesn't the

cbrt function
already use

S

-
Newton’s method

-
How to do it

v

~

return (int)cbrt((double) i);

How can ya beat
the highly tuned

cbrt function from
b the math library?

N

I dunno, use
Newton's method?

&

4 But doesn't the

»x cbrt function
already use
. e 's method?
e Newton's metho
/ _ Wait, I got I‘H
N Tankon cbrt calcula‘l‘es 64-bit
angenle
precision, but we need only 32-
To see this animated: @mg:nu Ralf Pfeifer bit pr‘eClSIon so Newton's
https://commons.wikimedia.org/wiki/File:Newtonlteration_Ani.gif W& G)@ - 7) me-‘-hod needs fewer‘ iterations
4 N

Before-lecture cogitation

Think about how you would solve this problem.

2

