Fast integer cube roots
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Implement a correct and fast integer cube-root function.
Correct: On any input (not just the “test harness”), it must
have behavior indistinguishable from this reference
implementation:
The Ethlcs Of #include <math.h>
H #include "root.h"
Extreme Performance Tuning s T ) &
return (int)cbrt((double) 1);
(excerpt) N
Andrew W Appel Fast: When connected to the “test harness” driver, the
program should run as fast as possible.
This challenge was designed by Guy J. Jacobson *81
1 ) in 1995 when he was teaching COS 333 at Princeton University 2/
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Performance measurement

root.h
int quickroot(int); slowroot.c

#include <math.h>
#include "root.h"

int quickroot(int i) {
return (int)cbrt((double) i);

testharness.c 3 X

#include <stdlib.h>
#include “root.h™

main (int argc, char *argv[]) { Floating-point cube root

(On a 1995 computer, much slower than today’s)

testharness.o + slowroot.o: 20 seconds

testharness.o + noroot.o: 2 seconds
noroot.c

#include <math.h>
#include "root.h"

int quickroot(int i) {

int i, j; from math.h return O;
srandom (atoi (argv[1])); }
f i=0;i 0000000; i . . . .
Orj (; quick:o:tl(.—andom();?ﬂ Note: noroot.c is really fast, but is not correct, that is, fails
exit (0); “on any input, it must have behavior indistinguishable from
} >/ this reference implementation” Y
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Challenge: g How to do it g
root.h return (int)cbrt((double) i);

int quickroot(int);

fastroot.c

#include “root.h™
int quickroot(int i) {

/* something really fast */
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return (int)cbrt((double) i);
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Before-lecture cogitation

Think about how you would solve this problem.
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