"Princeton University

Computer Science 217: Introduction to Programming Systems

-
Goals of this Lecture

/0 Management

Help you to learn about:
» The C/Unix file abstraction
» Standard C I/O
 Data structures & functions
* Unix I/0
+ Data structures & functions
» The implementation of Standard C I/O using Unix 1/O
» Programmatic redirection of stdin, stdout, and stderr
* Pipes

2

-
Assignment 7: Game referee

-
Agenda

Fork,
pipe,
exec,
read, write

Not actual computers,
but Linux processe

2

The C/Unix file abstraction

Unix I/O system calls

C’s Standard 10O library (FILE *)
Implementing standard C I/O using Unix 1/O
Redirecting standard files

Pipes

Y

-
C/Unix File Abstraction

~

-
Data Sources and Destinations

Problem:
At the physical level...

reads from disk, etc.

writes to disk, etc.

such details

Solution:
« File: a sequence of bytes

» C and Unix allow application program to treat any data
source/destination as a file

Commentary: Beautiful abstraction!

Code that reads from keyboard is very different from code that
Code that writes to video screen is very different from code that

Would be nice if application programmer didn't need to worry about

S/

Terminal Terminal

Your
Process

Process on
same computer

Process on

same computer

Process on Process on

diff computer

diff computer

S

4 N 7 N
C/Unix File Abstraction P\, 4 Unix 1/0 Data Structures 2z
2 o0
5 1
Each file has an associated file position g’
« Starts at beginning of file (if opened to read or write) %
« Starts at end of file (if opened to append) ZE" =
El 1023 .
Process
file file) . _ o
File descriptor: Integer that uniquely identifies an open file
File descriptor table: an array
> Indices are file descriptors; elements are pointers to file tables
One unique file descriptor table for each process
File table: a structure
In-memory surrogate for an open file
Created when process opens file; maintains file position
7 S
4 N 7
Unix 1/0 Data Structures b\, 4 Unix 1/0 Data Structures
2 o0 £ o0
e 2 e 2
S 3 R
: N : W
§~1023 . §~1023 .
Process Process
At process start-up files with fd 0, 1, 2 are open automatically Read from stdin = read from fd 0
(By default) each references file table for a file named /devi/tty Write to stdout = write to fd 1
Idevitty Write to stderr = write to fd 2
In-memory surrogate for the terminal
Terminal
Combination keyboard/video screen
) ")
4 N 7
System-Level Functions B, System-Level Functions
As noted in the Exceptions and Processes lecture... As noted in the Exceptions and Processes lecture..
Linux system-level functions for /O management Linux system-level functions for I/O redirection and
e [et Joen rierprocess communicaton
0 read() Read data from file descriptor _—e
e, by getChar()’ Scanf()’ - mm
1 write() Write data to file descriptor
Called by putchar(), printf(), etc. 32 dup() Duplicate an open file descriptor
2 open() Open file or device . L.
Called by fopent(..., “r") 22 pipe() Create a channel of communication
3 close() Close file descriptor between processes
Called by fclose()
85 creat() Open file or device for writing
Called by fopen(..., “w”)
8 Iseek() Change file position
Called by fseek()
1 12
J J

s

s

Unix I/O Functions

Unix I/O Functions

K

Agenda g Unix I/0O Functions g
The C/Unix file abstraction int creat(char *filename, mode_t mode);
. » Create a new empty file named filename
Unix I/O system calls = mode indicates permissions of new file
C’s Standard IO library (FILE *) * Implementation:
» Create new empty file on disk
Implementing standard C I/O using Unix 1/O + Create file table
Redirecting standard files » Set first .unused flle descriptor to ponnt.to file table
» Return file descriptor used, -1 upon failure
Pipes
13/ 14/
4 N 7 N

int open(char *filename, int flags,
* Open the file whose name is Filename
= flags oftenis O_RDONLY
» Implementation (assuming O_RDONLY):
 Find existing file on disk
+ Create file table
» Set first unused file descriptor to point to file table
» Return file descriptor used, -1 upon failure

)3

)

int close(int fd);
 Close the file fd
» Implementation:

» Destroy file table referenced by element fd of file descriptor
table

* As long as no other process is pointing to it!
» Set element £d of file descriptor table to NULL

)

s

Unix I/O Functions

-
Unix I/O Functions

<

int read(int fd, void *buf, int count);
* Read into buf up to count bytes from file fd
» Return the number of bytes read; 0 indicates end-of-file

int write(int fd, void *buf, iInt count);
» Writes up to count bytes from buf to file fd
» Return the number of bytes written; -1 indicates error

int Iseek(int fd, int offset, int whence);

» Set the file position of file fd to file position offset. whence
indicates if the file position is measured from the beginning of the file
(SEEK_SET), from the current file position (SEEK_CUR), or from the
end of the file (SEEK_END)

» Return the file position from the beginning of the file

")

Note

» Only 6 system-level functions support all /O from all kinds of
devices!

Commentary: Beautiful interface!

")

-~

Unix I/O Example 0

-~

Unix I/O Example 1

Proto-getchar()

and the problem is . . . too slow.

Does a system call for every character.

Write “hello, world\n” to /dev/tty

To save space,
no error handling
code is shown

-~

Unix I/O Example 2

-~

Unix I/O Example 2

Copy all bytes
from infile to outfile

To save space,
no error handling
code is shown

‘3 ‘{’J 3

-~

Unix I/O Example 2

-~

Unix I/O Example 2

kﬁ

~

p
Unix I/0 Example 2 Unix I/0 Example 2 g,!g

perating-system memory

g
5
£
5
i3
7
&
=
&
2

25) 26)
a N)
Agenda a!g Standard C I/O Data Structure a!g
We want 1-character-at-a-time 1/0 (getc(), putc())

The C/Unix file abstraction We want a-few-characters-at-a-time 1/0O (scanf, printf)

Unix 1/O system calls We could do this with read() and write() system calls,

C’s Standard IO library (FILE *) BUT IT WOULD BE TOO SLOW to do 1 syscall per byte

Implementing standard C 1/O using Unix I/O

Redirecting standard files Solution: Buffered input/output as an Abstract Data Type

Pipes The FILE ADT

* AFILE objectis an in-memory surrogate for an opened file
+ Created by fopen()
» Destroyed by fclose()
» Used by reading/writing functions
ZD 28)
a N)
Standard C I/O Functions g,'g‘ Standard C Input Functions &,',,q
Some of the most popular: Some of the most popular:
FILE *fopen(const char *filename, const char *mode); int fgetc(FILE *file);
» Open the file named filename for reading or writing » Read a char from the file identified by file
= mode indicates data flow direction » Return the char on success, EOF on failure
* “r’" means read; “w” means write, “a” means append) int getchar(void);

» Creates FILE structure
* Returns address of FILE structure

int fclose(FILE *file);
* Close the file identified by File
» Destroys FILE structure whose address is file
» Returns 0 on success, EOF on failure

» Same as fgetc(stdin)
char *fgets(char *s, int n, FILE *file);
» Read at most n characters from file into array s
» Returns s on success, NULL on failure
char *gets(char *s);
« Essentially same as fgets(s, INT_MAX, stdin)
« Buffer overflow waiting to happen

29) 30)

-
Standard C Input Functions

-
Standard C Output Functions

Some of the most popular:

int fscanf(FILE *file, const char *format,
» Read chars from the file identified by file
» Convert to values, as directed by format
» Copy values to memory
» Return count of values successfully scanned

int scanf(const char *format, ...);
» Same as fscanf(stdin, format, ..)

Some of the most popular:

int fputc(int c, FILE *file);
» Write ¢ (converted to a char) to file
» Return c on success, EOF on failure
int putchar(int c);
» Same as fputc(c, stdout)
int fputs(const char *s, FILE *file);

» Write string s to file
» Return non-negative on success, EOF on error

int puts(const char *s);
» Essentially same as fputs(s, stdout)

-
Standard C I/O Example 1

ot

i

31/ 32/
4 N 7 N
Standard C Output Functions g Standard C I/O Functions g
Some of the most popular: Some of the most popular:
int fprintf(FILE *file, const char *format, 2)s int fflush(FILE *file);
» Write chars to the file identified by file » On an output file: write any buffered chars to file
» Convert values to chars, as directed by format * On an input file: behavior undefined
» Return count of chars successfully written = file ==NULL = flush buffers of all open files
* Works by calling fputc() repeatedly int fseek(FILE *file, long offset, int origin);
int printf(const char *format, ...); « Set the file position of File
» Same as fprintf(stdout, format, ...) » Subsequent read/write accesses data starting at that position
- Origin: SEEK_SET, SEEK_CUR, SEEK_END
int ftell(FILE *file);
» Return file position of file on success, -1 on error
33/ 34/
N 7 N

Standard C I/O Example 2

Write “hello, world\n” to stdout

#include <stdio.h>
int main(void)
{ char hi[] = "hello world\n*;
size_t i = 0;
while (hi[i] !'= "\0")
{ putcharchi[i]);
i++;
3

return O;

>

Simple
Portable
Efficient (via buffering)

#include <stdio.h>

int main(void)

{ printf(Chello, world\n™);
return O;

#include <stdio.h>

int main(void)

{ puts('hello, world™);
return O;

3 3

»)

Copy all bytes from infile to outfile

#include <stdio.h>
int main(void)
{ intc;

fputc(c, outFile);
fclose(outFile);
fclose(inFile);
return O;

FILE *inFile; Simple

FILE *outFile;

inFile = fopen(infile”, "r™); Po_rt_able . .
outFile = fopen(“outfile”, "w'"); Efficient (via buffering)
while ((c = fgetc(inFile)) != EOF)

%)

s

Standard C Buffering

s

Standard C Buffering

Question: Exactly when are buffers flushed? Question: Exactly when are buffers flushed?
Answers: Answers:
If reading from a file If writing to an ordinary file
(1) When buffer is empty (1) File’ s buffer becomes full
(2) Process calls fflush() on that file
(3) Process terminates normally
If writing to stdout (in addition to previous)
(4) stdout is bound to terminal and "\n" is appended to buffer
(5) stdin and stdout are bound to terminal
and read from stdin occurs
If writing to stderr
* Irrelevant; stderr is unbuffered
37/ 38/
: e A
Standard C Buffering Example 24 Agenda b\, 1
#include <stdio.h>
int main(void) o .
{ int dividend, divisor, quotient; The C/Unix file abstraction
printf('Dividend: *); i
R gllj]}f%l:tﬂzgﬁigw Unix I/O system calls
printf(Divisor:): Output buffered C’s Standard IO library (FILE *)
scanf('%d*, ivisor); . . .
¢ e Buffer flushed Implementing standard C I/O using Unix I1/O
printf("The quotient is "); |
quotient = dividend / divisor; Output buffered Redirecting standard files
printf("%d\n", quotient); «—F Buffer flushed
return 0; Pipes
¥
$ pgm $ pgm
Dividend: 6 Dividend: 6
Divisor: 2 Divisor: 0O
The quotient is 3 Floating point exception
$ 39/ 40/
4 N 7 N
Standard C I/O g Implementing getchar and putchar g
Question:
« How to implement standard C 1/O data structure and getchar() calls read() to read one byte from fd 0
functions using Unix I/O data structures and functions? putchar() calls write() to write one byte to fd 1
Answer:
* In principle...
*In stages... int getchar(void) int putchar(int c)
. { unsigned char c; { if (write(d, &c, 1) == 1)
FILE *fp if (read(0, &c, 1) == 1) return c;
. re return (int)c; else
User process e e return EOF;
int fd return EOF; T
3
(ON) File descriptor:
An integer that uniquely
identifies an open file
Y)

~

Implementing Buffering

~

Implementing getchar Version 2 g!g

~

Problem: poor performance
« read() and write() access a physical device (e.g., a disk)
» Reading/writing one char at a time can be time consuming
« Better to read and write in larger blocks
» Recall Storage Management lecture

Solution: buffered 1/0

getchar () calls read() to read multiple chars from fd 0
into buffer

buffer

[in}
» Read a large block of chars from source device into a buffer bufferPtr %
» Provide chars from buffer to the client as needed bufferCount E
» Write individual chars to a buffer L
» “Flush” buffer contents to destination device when buffer is full, o
or when file is closed, or upon client request
s ®J

~

Implementing putchar Version 2 g!g

~

~

Implementing the FILE ADT

putchar () calls write() to write multiple chars from
buffer to fd 1

Real implementation

also flushes buffer
at other times

Observation:
« getchar() reads from stdin (fd 0)
e putchar () writes to stdout (fd 1)

Problem:
* How to read/write from/to files other than stdin (fd 0)
and stdout (fd 1)?
» Example: How to define fgetc() and fputc()?

Solution:
e Use FILE structure

©J

~

Implementing the FILE ADT

~

Implementing fopen and fclose g!g

~

Derived from
K&R Section 8.5

More complex
on our system

7

f = fopen(filename, "'r")
» Create new FILE structure; set f to point to it
« Initialize all fields
e f->fd = open(filename, .)
* Return ¥

T = fopen(Ffilename, "'w"
» Create new FILE structure; set T to point to it
« Initialize all fields
e f->fd = creat(filename, ..)
* Return ¥

fclose(T)
e close(f->fd)
» Destroy FILE structure

*

N
Implementing Standard C I/O Functions 3

4 N 7
Implementing fgetc 3 Implementing fputc
int fgetc(FILE *T) int fputc(int c, FILE *f)
{ 1if (f->bufferCount == 0) /* must read */ { if (f->bufferCount == BUFFERSIZE) /* must write */
{ f->bufferCount = { int countWritten = 0;
read(f->fd, f->buffer, BUFFERSIZE); while (countWritten < f->bufferCount)
IT (f->bufferCount <= 0) return EOF; ¢ intw?‘cijzzzflfd f->buffer+countWritten
(=R = (F=2iiers BUFFERSIZE-countWritten);
if (count <= 0) return EOF;
T->bufferCount--; countWritten += count;
f->bufferPtr++; 3 _ _
return (int) (*(F->bufferPtr-1)); F->bufferCount = 0; Real implementation
3 ¥->buffer[f->buffer00unt] = (char)c; alSO ﬂUSheS bUffer
f->buf'fe['Count++; at other times
return c;
» Accepts FILE pointer f as parameter b ‘
» Uses fields within f
« Reads from f->fd instead of 0 » Accepts FILE pointer f as parameter
» Uses fields within f
» Writes to f->fd instead of 1
4 50)
4 N 7 N
Implementing Standard C I/O Functions 3 Implementing Standard C I/O Functions 3
Standard C Function In Unix Implemented by Calling Standard C Function In Unix Implemented by Calling
fopen() open() or creat() fgetc() read()
fclose() close() getchar() fgetc()
fgets() fgetc()
gets() fgets()
fscanf() fgetc()
scanf() fscanf()
Slj 52j
4 4 N

Implementing Standard C 1/0 Functions 3

Standard C Function In Unix Implemented by Calling

fputc() write()
putchar() fputc()
fputs() fpute()
puts() fputs()
fprintf() fputc()
printf() forintf()

Standard C Function In Unix Implemented by Calling

fflush() write()
fseek() Iseek()
ftell() Iseek()

-
Agenda

~

Redirection

~

2

The C/Unix file abstraction

Unix I/O system calls

C’s Standard 10O library (FILE *)
Implementing standard C 1/O using Unix I/O
Redirecting standard files

Pipes

“)

Unix allows programmatic redirection of stdin, stdout, or
stderr

How?
» Use open(), creat(), and close() system-level functions
* Use dup() system-level function

int dup(int oldfd);
» Create a copy of file descriptor oldfd
» Old and new file descriptors may be used interchangeably; they
refer to the same open file table and thus share file position and file
status flags
» Uses the lowest-numbered unused descriptor for the new descriptor
» Returns the new descriptor, or -1 if an error occurred.

Paraphrasing man page 56)

4)

Redirection Example

9.

~

Redirection Example Trace (1)

9.

How does shell implement somepgm > somefile?

7

Parent Process

File .
descriptor 2
table 3

Parent has file descriptor table; first three point to “terminal”

4)

9.

Redirection Example Trace (2)

~

Redirection Example Trace (3)

Parent Process Child Process

File : . File
descriptor 2 2 descriptor
table 3 3 table

Parent forks child; child has identical-but distinct file descriptor table 59)

Parent Process Child Process

File :) File
descriptor 2 2 descriptor
table 3 3 table

Let’ s say OS gives CPU to parent; parent waits

~

9.

Redirection Example Trace (4)

~

~

~

9.

Redirection Example Trace (5)

Parent Process Child Process

File : . File
descriptor 2 2 descriptor
table 3 3 table

OS gives CPU to child; child creates somefile

Parent Process Child Process

File : . File
descriptor 2 2 descriptor
table 3 3 table

Child closes file descriptor 1 (stdout)

~

9.

Redirection Example Trace (6)

~

~

~

9.

Redirection Example Trace (7)

Parent Process Child Process

File : . File
descriptor 2 2 descriptor
table 3 3 table

Child duplicates file descriptor 3 into first unused spot

Parent Process Child Process

File : . File
descriptor 2 2 descriptor
table 3 3 table

Child closes file descriptor 3

~

9.

Redirection Example Trace (8)

~

~

~

9.

Redirection Example Trace (9)

Parent Process Child Process

File : . File
descriptor 2 2 descriptor
table 3 3 table

Child calls execvp()

Parent Process Child Process

File :) File
descriptor 2 2 descriptor
table 3 3 table

Somepgm executes with stdout redirected to somefile

4 N N
Redirection Example Trace (10) b\, Agenda b\,
Parent Process
File 0 The C/Unix file abstraction
1
?esc”ptor 2 Unix I/O system calls
able 3
| C’s Standard 10O library (FILE *)
pid = fork(Q:
TS Implementing standard C I/O using Unix 1/0
ot e Redirecting standard files
dup(fd);
close(fd); H
execvp(somefile, someargv); Plpes
fprintf(stderr, “exec failed\n");
exit(EXIT_FAILURE);
i
/* in parent */
wait(NULL);
Somepgm exits; parent returns from wait() and proceeds o) o)
4 N N
Inter-Process Communication (IPC)%Q; IPC Mechanisms 2z
Socket
Computer Computer * Mechanism for two-way communication between processes on
@ @ any computers on same network
* Processes created independently
Socket Socket » Used for client/server communication (e.g., Web)
Pipe
» Mechanism for one-way communication between processes on the
same computer
Gzt » Allows parent process to communicate with child process
* Allows two “sibling". processes to communicate
Pipe » Used mostly for a pipeline of filters
Both support file abstraction
69/ 70/
4 N N
Pipes, Filters, and Pipelines P\, e Pipeline Examples P\, e

Pipe
| process A }——[))—-| process B |

Filter: Program that reads from stdin and writes to stdout

filter

stdin i stdout

:

Pipeline: Combination of pipes and filters

(raeaaaA (] |} {ier -])-{pioceee®]

")

When debugging your shell program...

grep alloc *.c

« In all of the .c files in the working directory, display all lines that
contain “alloc”

cat *.c | decomment | grep alloc

* In all of the .c files in the working directory, display all non-comment
lines that contain “alloc”

cat *.c | decomment | grep alloc | more

« In all of the .c files in the working directory, display all non-comment
lines that contain “alloc”, one screen at a time

2

-
Creating a Pipe

2

-
Pipe Example 1 (1)

int pipe(int pipefd[2])

= pipe() creates a pipe, a unidirectional data channel that can be
used for interprocess communication

» The array pipefd is used to return two file descriptors referring to
the ends of the pipe

= pipefd[0] refers to the read end of the pipe

= pipefd[1] refers to the write end of the pipe

» Data written to the write end of the pipe is buffered by the kernel
until it is read from the read end of the pipe

* Quoting man —s2 pipe

Parent process sends data to child process

2 WN 2O

pLO]
pL1]

*

-
Pipe Example 1 (2)

-
Pipe Example 1 (3)

Parent process sends data to child process

2 WN 2O
2 WN O

pLO]
P[]

Parent process sends data to child process

2 WN 2O

2 WN O

pLO]
P[]

*J

-
Pipe Example 1 (4)

-
Pipe Example 2 (1)

Parent process sends data to child process

2 WN 2O
2 WN 2O

pLO]
P[]

Parent sends data to child through stdin/stdout

2 WN 2O

pLO]
P[]

*J

-
Pipe Example 2 (2)

-
Pipe Example 2 (3)

Parent sends data to child through stdin/stdout

2 WN 2O
2 WN 2O

pLO]
pL[1]

Parent sends data to child through stdin/stdout

2 WN 2O
2 WN 2O

pLO]
pL1]

-
Pipe Example 2 (4)

-
Summary

Parent sends data to child through stdin/stdout

2 WN 2O
2 WN O

p
3

pLO]
P[]

Now add in execs, and
you get the shell’'s
implementation of pipes!

The C/Unix file abstraction

Unix 1/0
« File descriptors, file descriptor tables, file tables
e creat(), open(), close(), read(), write(), Iseek()

C’s Standard I/O
e FILE structure
= fopen(), fclose(), fgetc(), fputc(), ...

Implementing standard C 1/O using Unix 1/O
* Buffering

Redirecting standard files
= dupQO

Pipes
= pipeQ

2)

