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The Memory/Storage Hierarchy

and Virtual Memory

Princeton University
Computer Science 217: Introduction to Programming Systems
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Goals of this Lecture

Help you learn about:
• Locality and caching

• The memory / storage hierarchy

• Virtual memory

• How the hardware and OS give application programs

the illusion of a large, contiguous, private address space

Virtual memory is one of the most important concepts in 

system programming



Agenda

Locality and caching

Typical storage hierarchy

Virtual memory
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Storage Device speed vs. size

Facts:
• CPU needs sub-nanosecond access to data to

run instructions at full speed

• Fast storage (sub-nanosecond) is small (100-1000 bytes)

• Big storage (gigabytes) is slow (15 nanoseconds)

• Huge storage (terabytes) is glacially slow (milliseconds)

Goal:
• Need many gigabytes of memory, 

• but with fast (sub-nanosecond) average access time 

Solution:  locality allows caching
• Most programs exhibit good locality

• A program that exhibits good locality will benefit from proper 

caching, which enables good average performance
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Locality

Two kinds of locality
• Temporal locality

• If a program references item X now,

it probably will reference X again soon

• Spatial locality

• If a program references item X now,

it probably will reference item at address X±1 soon

Most programs exhibit good temporal and spatial locality
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Locality Example

Locality example

• Temporal locality

• Data: Whenever the CPU accesses sum,

it accesses sum again shortly thereafter

• Instructions: Whenever the CPU executes sum += a[i],

it executes sum += a[i] again shortly thereafter

• Spatial locality

• Data: Whenever the CPU accesses a[i],

it accesses a[i+1] shortly thereafter

• Instructions: Whenever the CPU executes sum += a[i],

it executes i++ shortly thereafter

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

Typical code

(good locality)



Caching

Cache
• Fast access, small capacity storage device

• Acts as a staging area for a subset of the items in a slow access, 

large capacity storage device

Good locality + proper caching
• ⇒ Most storage accesses can be satisfied by cache

• ⇒ Overall storage performance improved
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Caching in a Storage Hierarchy
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Blocks copied
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Cache Hits and Misses

Cache hit
• E.g., request for block 10

• Access block 10 at level k

• Fast!

Cache miss
• E.g., request for block 8

• Evict some block from 

level k to level k+1

• Load block 8 from level

k+1 to level k

• Access block 8 at level k

• Slow!

Caching goal:
• Maximize cache hits

• Minimize cache misses

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

Level k is a cache

for level k+1
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Cache Eviction Policies

Best eviction policy: “oracle”
• Always evict a block that is never accessed again, or…

• Always evict the block accessed the furthest in the future

• Impossible in the general case

Worst eviction policy
• Always evict the block that will be accessed next!

• Causes thrashing

• Impossible in the general case!
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Cache Eviction Policies

Reasonable eviction policy: LRU policy
• Evict the “Least Recently Used” (LRU) block

• With the assumption that it will not be used again (soon)

• Good for straight-line code

• (can be) bad for loops

• Expensive to implement

• Often simpler approximations are used

• See Wikipedia “Page replacement algorithm” topic
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Locality/Caching Example: Matrix Mult

Matrix multiplication
• Matrix = two-dimensional array

• Multiply n-by-n matrices A and B

• Store product in matrix C

Performance depends upon
• Effective use of caching (as implemented by system)

• Good locality (as implemented by you)



Locality/Caching Example: Matrix Mult

Two-dimensional arrays are stored in either row-major or 

column-major order

C uses row-major order
• Access in row-major order ⇒ good spatial locality

• Access in column-major order ⇒ poor spatial locality
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Locality/Caching Example: Matrix Mult

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++) 

c[i][j] += a[i][k] * b[k][j];

Reasonable cache effects
• Good locality for A

• Bad locality for B

• Good locality for C a b c

i k k

j

i

j
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Locality/Caching Example: Matrix Mult

Poor cache effects
• Bad locality for A

• Bad locality for B

• Bad locality for C

for (j=0; j<n; j++)

for (k=0; k<n; k++)

for (i=0; i<n; i++)

c[i][j] += a[i][k] * b[k][j];

a b c

j

ii k k

j
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Locality/Caching Example: Matrix Mult

Good cache effects
• Good locality for A

• Good locality for B

• Good locality for C

for (i=0; i<n; i++)

for (k=0; k<n; k++)

for (j=0; j<n; j++)

c[i][j] += a[i][k] * b[k][j];

a b c

i k k

j

i



Agenda

Locality and caching

Typical storage hierarchy

Virtual memory
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Typical Storage Hierarchy

registers

main memory (RAM)

local secondary storage

(local disks, SSDs)

Larger

slower

storage

devices

remote secondary storage

(distributed file systems, Web servers)

Local disks hold files 

retrieved from disks on 

remote network servers

Main memory holds disk 

blocks retrieved from local 

disks

L1 cache

CPU registers hold words retrieved 

from L1/L2/L3 cache

L1/L2/L3 cache holds cache lines 

retrieved from main memory

Smaller

faster

storage 

devices
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Level 2 cache

Level 3 cache



Typical Storage Hierarchy

Factors to consider:
• Capacity

• Latency (how long to do a read)

• Bandwidth (how many bytes/sec can be read)

• Weakly correlated to latency: reading 1 MB from a hard disk

isn’t much slower than reading 1 byte

• Volatility

• Do data persist in the absence of power?
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Typical Storage Hierarchy

Registers
• Latency: 0 cycles

• Capacity: 8-256 registers (16 general purpose registers in x86-64)

L1/L2/L3 Cache
• Latency: 1 to 40 cycles

• Capacity: 32KB to 32MB

Main memory (RAM)
• Latency: ~ 50-100 cycles

• 100 times slower than registers

• Capacity: GB
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Cache / RAM Latency

https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

L1
L2

L3

DRAM

(L4)

1 clock = 3·10-10 sec



Typical Storage Hierarchy

Local secondary storage: disk drives

• Solid-State Disk (SSD):

• Flash memory (nonvolatile)

• Latency: 0.1 ms (~ 300k cycles)

• Capacity: 128 GB – 2 TB

• Hard Disk:

• Spinning magnetic platters, moving heads

• Latency: 10 ms (~ 30M cycles)

• Capacity: 1 – 10 TB
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Disks

1 ns

1 μs

1 ms

Kb Mb Gb Tb

DRAM

HDD

SSD



Typical Storage Hierarchy

Remote secondary storage

(a.k.a. “the cloud”)
• Latency: tens of milliseconds

• Limited by network bandwidth

• Capacity: essentially unlimited
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Storage Hierarchy & Caching Issues

Issue: Block size?
• Slow data transfer between levels k and k+1

⇒ use large block sizes at level k (do data transfer less often)

• Fast data transfer between levels k and k+1

⇒ use small block sizes at level k (reduce risk of cache miss)

• Lower in pyramid ⇒ slower data transfer ⇒ larger block sizes
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Device Block Size

Register 8 bytes

L1/L2/L3 cache line 64 bytes

Main memory page 4KB (4096 bytes)

Disk block 4KB (4096 bytes)

Disk transfer block 4KB (4096 bytes) to 

64MB (67108864 bytes)



Storage Hierarchy & Caching Issues

Issue: Who manages the cache?
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Device Managed by:

Registers

(cache of L1/L2/L3 cache and 

main memory)

Compiler, using complex code-

analysis techniques

Assembly lang programmer

L1/L2/L3 cache

(cache of main memory)

Hardware, using simple 

algorithms

Main memory

(cache of local sec storage)

Hardware and OS, using virtual 

memory with complex 

algorithms (since accessing 

disk is expensive)

Local secondary storage 

(cache of remote sec storage)

End user, by deciding which 

files to download



Agenda

Locality and caching

Typical storage hierarchy

Virtual memory
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Main Memory: Illusion

Process 1 Process 2

Memory

for

Process

1

0000000000000000

FFFFFFFFFFFFFFFF

Memory

for

Process

2

0000000000000000

FFFFFFFFFFFFFFFF

Each process sees main memory as

Huge: 264 = 16 EB (16 exabytes) of memory     ≈ 1019

Uniform: contiguous memory locations from 0 to 264-1



29

Main Memory: Reality

Process 1 VM Process 2 VM
…00000000

…FFFFFFFF

…00000000

…FFFFFFFF

Memory is divided into pages

At any time some pages are in physical memory, some on disk

OS and hardware swap pages between physical memory and disk

Multiple processes share physical memory

unmapped

unmapped

Physical Memory

Disk



Virtual & Physical Addresses

Question
• How do OS and hardware implement virtual memory?

Answer (part 1)
• Distinguish between virtual addresses and physical addresses
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Virtual & Physical Addresses (cont.)

Virtual address
• Identifies a location in a particular process’s virtual memory

• Independent of size of physical memory

• Independent of other concurrent processes

• Consists of virtual page number & offset

• Used by application programs

Physical address
• Identifies a location in physical memory

• Consists of physical page number & offset

• Known only to OS and hardware

Note:
• Offset is same in virtual addr and corresponding physical addr

31

virtual page num offset

physical page num offset



CourseLab Virtual & Physical Addresses

On CourseLab:
• Each offset is 12 bits

• Each page consists of 212 bytes

• Each virtual page number consists of 52 bits

• There are 252 virtual pages

• Each virtual address consists of 64 bits

• There are 264 bytes of virtual memory (per process)
32

virtual page num offset

52 bits 12 bits

virtual

addr

physical page num offsetphysical

addr



CourseLab Virtual & Physical Addresses

On CourseLab:
• Each offset is 12 bits

• Each page consists of 212 bytes

• Each physical page number consists of 25 bits

• There are 225 physical pages

• Each physical address consists of 37 bits

• There are 237 (128G) bytes of physical memory (per computer)
33

virtual page num offset

52 bits 12 bits

virtual

addr

physical page num offsetphysical

addr

12 bits25 bits



Page Tables

Question
• How do OS and hardware implement virtual memory?

Answer (part 2)
• Maintain a page table for each process
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Page Tables (cont.)

Page table maps each

in-use virtual page to:
• A physical page, or

• A spot (track & sector)

on disk
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Virtual Page 

Num

Physical Page 

Num or Disk Addr

0 Physical page 5

1 (unmapped)

2 Spot X on disk

Page Table for Process 1234

… …

3 Physical page 8



Virtual Memory Example 1
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Process 1234 accesses mem at virtual addr 16386

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234

Virtual Mem

VP 2

VP 5

0

1

2

3

4

5

6

0

1

2

3

Disk

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234

Page Table

…

…

… X

Y

iClicker Question coming up . . .



iClicker Question

Q: For virtual address 16386 (= 0x4002), what is the

virtual page number and offset within that page?

A. Page = 4, offset = 2

B. Page = 0x40 = 64, offset = 2

C. Page = 0x400 = 1024, offset = 2

D. Page = 2, offset = 4

E. Page = 2, offset = 0x400 = 1024



Virtual Memory Example 1 (cont.)
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Hardware consults page table

Hardware notes that virtual page 4 maps to phys page 1

Page hit!

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234

Virtual Mem

VP 2

VP 5

0

1

2

3

4

5

6

0

1

2

3

Disk

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234

Page Table

…

…

… X

Y



iClicker Question

Q: For virtual address 16386 (= 0x4002),

what is the corresponding physical address?

A. 0x14002

B. 0x4102

C. 0x1002

D. 0x1000

E. 0x2

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

…



Virtual Memory Example 1 (cont.)
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Hardware forms physical addr

Physical page num = 1; offset = 2

= 0x1002

= 4098

Hardware fetches/stores data from/to phys addr 4098

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234

Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234

Page Table

…

…

… VP 2

VP 5

Disk

X

Y



Virtual Memory Example 2
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Process 1234 accesses mem at virtual addr 8200

8200 = 0x2008 =

Virtual page num = 2; offset = 8

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234

Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234

Page Table

…

…

… VP 2

VP 5

Disk

X

Y



Virtual Memory Example 2 (cont.)
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VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234

Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234

Page Table

…

…

… VP 2

VP 5

Disk

X

Y

Hardware consults page table

Hardware notes that virtual page 2 maps to spot X on disk

Page miss!

Hardware generates page fault



Virtual Memory Example 2 (cont.)
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VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234

Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234

Page Table

…

…

… VP 6

VP 5

Disk

X

YOS gains control of CPU

OS swaps virtual pages 6 and 2
This takes a long while (disk latency); run another process for the time being, then eventually...

OS updates page table accordingly

Control returns to process 1234

Process 1234 re-executes same instruction



Virtual Memory Example 2 (cont.)
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Process 1234 accesses mem at virtual addr 8200

8200 = 0x2008 =

Virtual page num = 2; offset = 8

VP 3

VP 4

VP 0

VP 2
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Virtual Mem
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Virtual Memory Example 2 (cont.)
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VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234

Virtual Mem
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Hardware consults page table

Hardware notes that virtual page 2 maps to phys page 3

Page hit!



Virtual Memory Example 2 (cont.)
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Hardware forms physical addr

Physical page num = 3; offset = 8

= 0x3008

= 12296

Hardware fetches/stores data from/to phys addr 12296

VP 3
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VP 0
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Virtual Memory Example 3
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Process 1234 accesses mem at virtual addr 4105

4105 = 0x1009 =

Virtual page num = 1; offset = 9

VP 3

VP 4

VP 0

VP 2
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Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234

Page Table

…

…
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Virtual Memory Example 3 (cont.)
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VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234

Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234

Page Table

…

…
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VP 5

Disk

X

Y
Hardware consults page table

Hardware notes that virtual page 1 is unmapped

Page miss!

Hardware generates segmentation fault (Signals lecture!)

OS gains control, (probably) kills process



Storing Page Tables

Question
• Where are the page tables themselves stored?

Answer
• In main memory

Question
• What happens if a page table is swapped out to disk???!!!

Answer
• OS is responsible for swapping

• Special logic in OS “pins” page tables to physical memory

• So they never are swapped out to disk

49



Storing Page Tables (cont.)

Question
• Doesn’t that mean that each logical memory access requires two 

physical memory accesses – one to access the page table,

and one to access the desired datum?

Answer
• Yes!

Question
• Isn’t that inefficient?

Answer
• Not really…
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Storing Page Tables (cont.)

Note 1
• Page tables are accessed frequently

• Likely to be cached in L1/L2/L3 cache

Note 2
• X86-64 architecture provides special-purpose hardware support for 

virtual memory…
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Translation Lookaside Buffer

Translation lookaside buffer (TLB)
• Small cache on CPU

• Each TLB entry consists of a page table entry

• Hardware first consults TLB

• Hit ⇒ no need to consult page table in L1/L2/L3 cache or memory

• Miss ⇒ swap relevant entry from page table in L1/L2/L3 cache or 

memory into TLB; try again

• See Bryant & O’Hallaron book for details

Caching again!!!
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Additional Benefits of Virtual Memory 

Virtual memory concept facilitates/enables many other OS 

features; examples…

Context switching (as described last lecture)

• Illusion: To context switch from process X to process Y, OS must save 

contents of registers and memory for process X, restore contents of 

registers and memory for process Y

• Reality:  To context switch from process X to process Y, OS must save 

contents of registers and virtual memory for process X, restore contents of 
registers and virtual memory for process Y

• Implementation:  To context switch from process X to process Y, OS must 

save contents of registers and pointer to the page table for process X, 

restore contents of registers and pointer to the page table for process Y
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Additional Benefits of Virtual Memory 

Memory protection among processes
• Process’s page table references only physical memory pages that 

the process currently owns

• Impossible for one process to accidentally/maliciously affect physical 

memory used by another process

Memory protection within processes
• Permission bits in page-table entries indicate whether page is

read-only, etc.

• Allows CPU to prohibit

• Writing to RODATA & TEXT sections

• Access to protected (OS owned) virtual memory
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Additional Benefits of Virtual Memory

Linking
• Same memory layout for each process

• E.g., TEXT section always starts at virtual addr 0x400000

• Linker is independent of physical location of code

Code and data sharing
• User processes can share some code and data

• E.g., single physical copy of stdio library code (e.g. printf)

• Mapped into the virtual address space of each process
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Additional Benefits of Virtual Memory

Dynamic memory allocation
• User processes can request additional memory from the heap

• E.g., using malloc() to allocate, and free() to deallocate

• OS allocates contiguous virtual memory pages…

• … and scatters them anywhere in physical memory
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Additional Benefits of Virtual Memory

Creating new processes
• Easy for “parent” process to “fork” a new “child” process

• Initially: make new PCB containing copy of parent page table

• Incrementally: change child page table entries as required

• See Process Management lecture for details

• fork() system-level function

Overwriting one program with another
• Easy for a process to replace its program with another program

• Initially: set page table entries to point to program pages that 

already exist on disk!

• Incrementally: swap pages into memory as required

• See Process Management lecture for details

• execvp() system-level function
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Measuring Memory Usage

$ ps l

F   UID   PID  PPID PRI  NI    VSZ RSS WCHAN  STAT TTY        TIME COMMAND

0 42579  9655  9696  30  10 167568 13840 signal TN   pts/1      0:00 emacs –nw

0 42579  9696  9695  30  10  24028 2072 wait   SNs  pts/1      0:00 -bash

0 42579  9725  9696  30  10  11268 956 - RN+  pts/1      0:00 ps l

VSZ (virtual memory size): virtual memory usage

RSS (resident set size): physical memory usage

(both measured in kilobytes)

On CourseLab computers:
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Summary

Locality and caching
• Spatial & temporal locality

• Good locality ⇒ caching is effective

Typical storage hierarchy
• Registers, L1/L2/L3 cache, main memory, local secondary storage 

(esp. disk), remote secondary storage

Virtual memory
• Illusion vs. reality

• Implementation

• Virtual addresses, page tables, translation lookaside buffer (TLB)

• Additional benefits (many!)

Virtual memory concept permeates the design of  

operating systems and computer hardware


