Machine language

The Build Process

e . . N 7 N\
Princeton University] A paradox A
Computer Science 217: Introduction to Programming Systems = p gt

grader.c int main(void) {
G LRSS = A1 printf("What is your name?\n™);
_ epe- readsString(name);
char grade = “D"; = o oy ——
char name[BUFSIZE]; Uiz é:;gmg(?grf?' RUEIEIT) & @)
/* Read a string into s */ printf("%cdis your g_;rade, %s.\n",
void readString(char *s) { t gl:a 2 MEWD)3
. char buf[BUFSIZE]; 1 return O,
Machine Language int i =05 int

/* Read string into buf[] */ What is your name?
for (:;) { R Bob

c = fgetc(stdin); .

if (c == EOF || & == "\n") D is your grade, Bob.

break; X

buf[i] = c; ‘What is your name?
. it Andrew
7% Copy buf[] to s[] */ B is your grade, Andrew.
buf[i] = "\0"; -
for (i = 0; i < BUFSIZE; i++) ‘What is your name?
5 s[i] = buf[i]; [fill in something here]

A is your grade, Susan.
\ AN 2)
4 N 7

This lecture is about
» machine language (in general)
» x86-64 machine language (in particular)
» The assembly and linking processes
* Amusing and important applications to computer security
(and therefore, Programming Assignment 5, Buffer Overrun)

2

mypgn-c

Preprpcess

mypgm.s

Assemble

|mypgm.o| | Iibc.a|
Lipk

Covered in COS 320:
Compiling Techniques

Covered
here

Y

/

Instruction Set Architecture (ISA)

-

CISC and RISC styles of machine language

There are many kinds of computer chips out there:

Intel x86 series M)

IBM PowerPC Each of these different

ARM - “machine architectures”
understands a different

RISC-V machine language

MIPS

-/
(and, in the old days, dozens more)

Complex, powerful
instructions

Many memory addressing
modes (direct, indirect,
base+displacement, indexed,
scaled indexed)

Hardware interpretation is
complex

Need relatively few instructions
to accomplish a given job

Example: x86-64

CISC RISC

Simple do-only-one-thing
instructions

Few memory addressing
modes (typically only
base+displacement)

Hardware interpretation is
simple

Need more instructions to
accomplish a given job

Examples: ARM, PowerPC

Energy efficient;
battery lasts longer!

)

-
Agenda

P
x86-64 Instruction Format 9.
]

Difficult to generalize about x86-64 instruction format; many instructions use this format

x86-64 Machine Language

Buffer overrun vulnerabilities

x86-64 Machine Language after Assembly
x86-64 Machine Language after Linking

Assembly Language: addq %rax, %rbx

Machine Language: 01001000 00000001 11000011

7

Up to4 1,2, 0(3/ 1 byte \ 1 byte) 1,2,0r4 1,2,4,0r8
prefixes \of bytes (if required) | (if.required) bytes bytes
1 byte ea \ (if required) (if required)
(ptiona) \7" 65 32 0 7 65 32 0

Reg/

Instruction prefix
» Sometimes a repeat count
» Rarely used; don’t be concerned

- 5

s

s

Mod | -R€IN | R/m

\7 65

Upto4 1,2r3 1byte | 1byte
prefixes of bytes (if required) | (if.required)
1 byte each e \

(optional) 7 65 39 0

1,2,0r4
bytes
(if required)

32

Opcode

» Add, move, call, etc.

» Specifies which operation should be performed

» Sometimes specifies additional (or less) information

1,2,4,0r8
bytes
(if required)

Q

Upto 4 1,2,0(3'4 1 byte \ 1 byte) 1,2,0r4 1,2,4,0r8
prefixes of bytes (if requiked) | (if.required) bytes bytes
1 byte each \ (if required) (if required)
(optional) 7765 32 \o 7 65 32 0

Reg/

ModR/M (register mode, register/opcode, register/memory)
+ Specifies types of operands (immediate, register, memory)

+ Specifies sizes of operands (byte, word, long)

» Sometimes contains an extension of the opcode

Mod

- AN °J
4 N 7 N
x86-64 Instruction Format (cont.) E x86-64 Instruction Format (cont.) z',g

Sometimes 3 bits in ModR/M byte, along with extra bit in
another field, specify a register
* For 8-byte registers: Exgra Mggg/M ReRgliiter | Upto4 L2003 bye | 1fye ~ 12,014 2.4 008
0 001 RCX prefixes of bytes (if required) (if-reguired) bytes bytes
0 010 RDX 1 byte each Ve Ny (if required)\ (if required)
0 011 RBX (optional) 7 g5 32 o [\7 65 32 0
0 100 RSP ; Reg/ .
0 101 RBP Mod R/M
0 110 RSI ‘ Opcode ‘ _
0 111 RDI
1 000 R8
1 001 RO
Fi ; ; 1 010 R10
Similar mappings exist T o1l Rn SIB (scale, index, base)
for 4-byte, 2-byte 1 100 R12 ’ ’ .
d 1-bvte registers 1 101 R13 » Used when one of the operands is a memory operand
an Yy g 1 110 R14 that uses a scale, an index register, and/or a base register
1 111 R15
- o\ 2

s

s

Upto 4 1,2,0(3'4 1 byte \ 1 byte /2, or 4 1,2,4,0r8
prefixes of bytes (if required) | (if.required) bytes bytes
1 byte each Ve \ (if required) (if required)
(ptional) 7" 65 32 o 7 32 0
Reg/
Mod Opcode R/M

Displacement
+ Part of memory operand, or...
* In jump and call instructions, indicates the displacement between
the destination instruction and the jump/call instruction
* More precisely, indicates:
[addr of destination instr] — [addr of instr following the jump/call]

» Uses little-endian byte order

Upto 4 1,2,0(3'4 1 byte \ 1 byte 1,2,0r4 74,0r8
prefixes of bytes (if required) | (if.required) bytes bytes
1 byte each Ve \ (if required) (if required)
(optional) 7 65 39 0
Reg/
Mod Opcode R/M
Immediate

» Specifies an immediate operand
» Uses little-endian byte order

Y

s

Example 1

-
Example 2

Assembly lang:
Machine lang:
Explanation:

addq %rax, %rbx
4801c3

01001000 00000001 11000011

Opcode: This is an add instruction whose src operand is an
8-byte register or memory operand and whose dest operand is
a 8-byte register
ModR/M: The M field of the ModR/M byte
designates a register
ModR/M: The src register is RAX
ModR/M: The dest register is RBX

Extra ModR/M Register

Observation: Sometimes opcode
specifies operation (e.g. add)
and format(s) of operand(s)

ococoocoooo

000
001
010
011
100
101
110
111

RAX/EAX
RCX/ECX
RDX/EDX
RBX/EBX
RSP/ESP
RBP/EBP
RSI/ESI
RDI/EDI

)

movl $1, %ebx
bb01000000

Assembly lang:
Machine lang:
Explanation:

10111011 00000001 00000000 00000000 00000000

Opcode: This is a mov instruction whose src operand is a 4-byte
immediate
Opcode: the destination operand is the EBX register
Immediate: The immediate operand is 1

Observation: Sometimes opcode specifies operation and operand(s)
Observation: Immediate operands are in little-endian byte order

)

s

Examples 3, 4

-
Example 5

Assembly lang:
Machine lang:
Explanation:

pushqg %rax
50

Assembly lang:
Machine lang:
Explanation:

movl -8(%eax,%ebx,4), %edx
678b549818

01010000
Opcode: This is a pushg %rax instruction

Assembly lang:
Machine lang:
Explanation:

pushqg %rcx
51

01010001
Opcode: This is a pushqg %rcx instruction

Observation: Sometimes opcode specifies operation and operand(s)
Observation: pushq is used often, so is optimized into 1 byte

7

10100111 10001011

Opcode: This is a
a 4-byte register
a 4-byte register

01010100 10011000 11111000

mov instruction whose src operand is
or memory operand and whose dest operand is

ModR/M: The src operand is a register, the
dest operand is of the form disp(base, index,
scale), the base and index registers are
4-byte registers, and the disp is one-byte
ModR/M: The destination register is EDX
SIB: The scale is 4
SIB: The index register is EBX
SIB: The base reg is EAX
Displacement: The disp is -8

Observation: Two’s complement notation
_ Observation: Complicated!!!

8)

-
Agenda

-
A program

x86-64 Machine Language

Buffer overrun vulnerabilities

x86-64 Machine Language after Assembly
x86-64 Machine Language after Linking

% a.out

What is your name?
John Smith

Thank you, John Smith.
%

What is your name?

What is your name?

. v) L %)
e N R
Why did this program crash? g!g Stack frame layout g!g

Buffer overrun

9.

Innocuous? buffer overrun

adsli57asdkhj5jklds;ahj5; klsaduj5klysdukl5aujksd5ukals;5uj;akukla John Smith
Segmentation fault Thank you, John Smith. %RSP — _
% % 00'6\ . 1 10
V@ name | J .0 . h.n
" =
N S m.,1i
old %RSP — t.h\D -
Saved RIP —
Saved
Registers
.
N\ AN 2)
4 N)

% a.out
What is your name?

abcdefghi jkImnopqrstu

%RSP —

Segmentation fault _
% i 10

N
< oo

\© 0% hame

&

a Cc
€., r.g.n

gk b
m n&mgf\

= o
- T O

old %RSP —s
Saved RIP

g Savsd t

Registers

I

% a.out

What is your name?

abcdefghi jkl1????7a000

% %RSP —

old %RSP —s
Saved RIP

a Cc

i, j.k
? ? 22

Saved
Registers

I

2

N)
Cl 1 licious? .
Maliciously clever» BUFfEr overrun ®: | | Attacking a web server B
% a.out URLs

What is your name?
abcdefghi jkl????executable-machine-code...

%RSP —

How may | serve you, master?

% 10
#include <stdio.h> a.b.c.d
int main(int argc, char **argv) { e, f g.h
char name[12]; int i; i ok
printf("What is your name?\n"); old %RSP —s St
for (i=0; ; i++) { Saved-RIP | 2 .2 ‘—9—9—‘)
i @ = GRiEEr0)s executable
if (c=="\n' || ¢ ==EOF) break; machine
name[i] = c; cade
3
—

name[i]="\0";
printf("Thank you, %s.\n", name);

NOTE: in the programming assignment,

Input in web forms

Crypto keys for SSL

Client PC

etc.

£FE A -

COMPUTER SCIENCE

o=

%)

return O: you will not execute machine code directly
’ from the stack, you’ll arrange for your
3} injected machine code to be copied to 5
g the data segment, and execute it from there. >) \\
4 N

Attacking a web browser

~
Attacking everything in sight 9

HTML keywords

for(i=0;p[i];i++)
gif[i]=pLil;

Images

Image names o
o

Defenses against this attack

URLs [0
— Client PC e Internet
ete. . Web Server @ badguy.com
Client PC @ badguy.com
NN} ‘www.badguy.com -] E-mail client
PDF viewer
Earn $$$ Thousands Operating-system kernel
working at home!
TCP/IP stack
\ 27)\ Any application that ever sees input directly from the outside 2)
4 N N

Your programming assignment:
Attack the “grader” program

array-out-of-bounds impossible
(Java, C#, ML, python,)

¢~ If you must program in C: use discipline

None of these . .
and software analysis tools in C

would have .
prevented the programming always to check bounds
“Heartbleed” of array subscripts

attack <

Otherwise, stopgap security patches:

» Operating system randomizes initial stack pointer
« “No-execute” memory permission

_ ~ . “Canaries” at end of stack frames

Best: program in languages that make

»)

int main(void) {

enum {BUFSIZE = 48};
printf("What is your name?\n');

char grade = "D"; readString(name) ;
char name[BUFSIZE]; if (strcmp(name, "Andrew') == 0)
grade = "B~;

printf("%c is your grade, %s.\n",
grade, name);
return 0;

/* Read a string into s */
void readString(char *s) {
char buf[BUFSIZE];
int i = 0; int c; ¥

/* Read string into buf[] */
for G A
c = fgetc(stdin);
if (c == EOF || ¢ == "\n")
break;
buf[i] = c;
i++;

What is your name?

Bob
D is your grade, Bob.

What is your name?
Andrew

3* Copy buf[] to s[] */ B is your grade, Andrew.
buf[i] = "\0";

0; i < BUFSIZE; i++)
buf[i];

for (i
s[i]

What is your name?
Susan\R1*12222*2221% 1951 21(1* 9 (*M?

A is your grade, Susan.

»)

-
Agenda

-
An Example Program

x86-64 Machine Language

Buffer overrun vulnerabilities
x86-64 Machine Language after Assembly Co
x86-64 Machine Language after Linking

2

A simple
(nonsensical)
program:

Let’s consider the machine
lang equivalent after
assembly...

N

2)

-
Examining Machine Lang: RODATA

~

9.

-
Examining Machine Lang: TEXT

Assemble program; run objdump |

| Offsets | | Contents * Assembler does not know addresses
» Assembler knows only offsets
= "Type a char' starts at offset 0

= "Hi\n" starts at offset Oe

»)

Assemble program; run objdump

Machine
language

Relocation
records

Assembly
language

Let's examine one line at a time...

*)

-
movl $0, %eax

~
movl $0, %eax

%)

Assembly lang:
Machine lang:
Explanation:

movl $0, %eax
b800000000

10111000 00000000 00000000 00000000 00000000

Opcode: This is a mov instruction whose src operand is a 4-byte
immediate
Opcode: the destination operand is the EAX register
Immediate: The immediate operand is O

)

~
movq $msg1, %rdi

~

movqg $msg1, %rdi

)

Assembly lang: movqg $msgl, %rdi
Machine lang: 48 C7 C7 00 00 00 00
Explanation:

01001000 11000111 110010111 00000000 00000000 00000000 00000000
Opcode: This is a movqg instruction with a 4-byte immediate
source operand and a 8 byte register destination operand
Opcode: The destination register is RDI
Opcode: The destination register is
RDI (cont.)
Disp: The immediate(memory address)
is 0

= movqg must contain an address
» Assembler knew offset marked by msgl

« But assembler did not know address of RODATA section!
« So assembler didn’t know address marked by msgl

« So assembler couldn’t generate this instruction completely

= msgl marks offset O relative to beginning of RODATA section

)

-
Relocation Record 1

~

Relocation Record 1

8: R_X86_64_32S .rodata

This part s always the same,

it’s the name of the machine architecture!

Dear Linker,

Please patch the TEXT section at offset
08,,. Patch in a 32-bit, Signed value. When
you determine the addr of the RODATA
section, place that address in the
TEXT section at the prescribed place.

Sincerely,
Assembler
») “)
(" (")
call printf call printf 9
Assembly lang: call printf
Machine lang: e8 00 00 00 00

Y

Explanation:

11101000 00000000 00000000 00000000 00000000
Opcode: This is a call instruction with a 4-byte
displacement

Disp: The displacement is 00000000, (0)

« call must contain a displacement
» Assembler had to generate the displacement:
[addr of printf] — [addr after cal I instr]
» But assembler didn’t know addr of printf
e printfisn’t even present yet!
» So assembler couldn’t generate this instruction completely

2

-
Relocation Record 2

-
Relocation Record 2

£

d: R_X86_64 PC32 printf-0x4

This partis always the same,

it’s the name of the machine architecture!

Dear Linker,

Please patch the TEXT section at offset
0d,, . Patch in a 32-bit “PC-relative” value.
When you determine the addr of printf,
compute [addr of printf] — [addr after
call] and place the result at
the prescribed place.

Sincerely,
Assembler

*)

-
call getchar

-
call getchar

£

Assembly lang:
Machine lang:
Explanation:

call getchar
e8 00 00 00 00

11101000 00000000 00000000 00000000 00000000
Opcode: This is a call instruction with a 4-byte
displacement

Disp: The displacement is 00000000, (0)

= call must contain a displacement
» Assembler had to generate the displacement:
[addr of getchar] — [addr after cal I instr]
» But assembler didn’t know addr of getchar
e getchar isn’t even present yet!
» So assembler couldn’t generate this instruction completely

*)

-
Relocation Record 3

-
Relocation Record 3

Y

12: R_X86_64 PC32 getchar-0x4

Dear Linker,

Please patch the TEXT section at
offsets 12,,. Do a 32-bit PC-relative
patch. When you determine the addr of
getchar, compute [offset of getchar] -
[addr after cal 1] and place the result at
the prescribed place.

Sincerely,
Assembler

*)

-
cmpl $'A’, %eax

-
cmpl $'A’, %eax

2

Assembly lang:
Machine lang:
Explanation:

cmpl $°A", %eax
83 8 41

10000011 11111000 01000001
Opcode: This is an instruction whose source operand is a
one-byte immediate and whose destination operand is a
register or memory

ModR/M: This is a cmpl instruction, and the last

three bytes of the ModR/M field specify the

destination register

ModR/M: The dest register is EAX
The immediate operand is 41, ("A%)

I J
4 4 N
jne skip jne skip &!B

Assembly lang: jne skip
Machine lang: 7511
Explanation:

01110101 00010001
Opcode: This is a jne instruction with a one-byte
displacement

Disp: The displacement is 11, (17,)

= jne must contain a displacement
» Assembler had to generate the displacement:
[addr of skip] — [addr after jne instr]
Assembler did know addr of skip
» So assembler could generate this instruction completely
2cy— 1by=114=17,

jne skip

-
movl $0, %eax

~
movl $0, %eax

2

~
movq $msg2, %rdi

movl $0, %eax
b800000000

Assembly lang:
Machine lang:
Explanation:

10111000 00000001 00000000 00000000 00000000
immediate

Opcode: the destination operand is the EAX register
Immediate: The immediate operand is O

Opcode: This is a mov instruction whose src operand is a 4-byte

)

)

~
movqg $msg2, %rdi

9.

-
Relocation Record 4

movqg $msg2, %rdi
48 C7 C7 00 00 00 00

Assembly lang:
Machine lang:
Explanation:

01001000 11000111 110010111 00000000 00000000 00000000 00000000
Opcode: This is a movqg instruction with a 4-byte immediate
source operand and a 8 byte register destination operand
Opcode: The destination register is RDI
Opcode: The destination register is
RDI (cont.)
Disp: The immediate(memory address)
is 0

= movqg must contain an address
» Assembler knew offset marked by msg2

» But assembler did not know address of RODATA section!
* So assembler didn’t know address marked by msg2
« So assembler couldn’t generate this instruction completely

= msg2 marks offset Oey, relative to beginning of RODATA section

)

J

-
Relocation Record 4

9.

-
call printf

23: R_X86_64_32S .rodata+Oxe

Dear Linker,

Please patch the TEXT section at offset
23,,. Patch in a 32-bit Signed value. When
you determine the addr of the RODATA
section, add 0Oe, to that address, and place
the result in the TEXT section at the
prescribed place.

Sincerely,
Assembler

#)

©)

-
call printf

~

Relocation Record 5

Assembly lang:
Machine lang:
Explanation:

call printf
e8 00 00 00 00

11101000 00000000 00000000 00000000 00000000
Opcode: This is a call instruction with a 4-byte
displacement

Disp: The displacement is 00000000, (0)

= call must contain a displacement
» Assembler must generate the displacement:
[addr of printf] — [addr after cal I instr]
» But assembler didn’t know addr of printf
e printf isn’'t even present yet!
» So assembler couldn’t generate this instruction completely

“)

2)

-
Relocation Record 5

~

movl $0, %eax

28: R_X86_64_PC32 printf-0x4

Dear Linker,

Please patch the TEXT section at
offset 28,,. Patch in a 32-bit PC-relative
address. When you determine the addr of
printf, compute [addr of printf] -
[addr after cal 1] and place the result at
the prescribed place.

Sincerely,
Assembler

N &) 6)
s N R
movl $0, %eax g!g ret a!g

Assembly lang:
Machine lang:
Explanation:

movl $0, %eax
b8 00 00 00 00

10111000 00000000 00000000 00000000 00000000
Opcode: This is a mov instruction whose source operand is a
four-byte immediate and whose destination is EAX

The immediate operand is O

“)

)

Linker Relocation

v]

o

4 N 7 N
ret g Agenda g
Assembly lang: ret mypgm-c
Machine lang: c3 .
. x86-64 Machine Language
Explanation: Preprocess
11000011 Buffer overrun vulnerabilities pry—
Opcode: This i t (ali tq) instructi .
peode: This 1s a ret (altas reta) Instruction x86-64 Machine Language after Assembly
x86-64 Machine Language after Linking mypgm-s
Assemble
| mypgm.o || libc.a
Link
> [mypon
N\) L %)
4 N 7 N
From Assembler to Linker !p Linker Resolution !p
Resolution
. . . « Linker resolves references
Assembler writes its data structures to .o file ! v
Linker: For this program, linker:
Inker.) * Notes that labels getchar and printf are unresolved
* Reads .o file « Fetches machine language code defining getchar and printf
» Writes executable binary file from libc.a
* Works in two phases: resolution and relocation . Adds that code to TEXT section
» Adds more code (e.g. definition of _start) to TEXT section too
» Adds code to other sections too
N\ AN)
4 N 7 N

Examining Machine Lang: RODATA

=

Relocation
« Linker patches (“relocates”) code
« Linker traverses relocation records, patching code as specified

7

/ Link program; run objdump ‘
gcc! etecta.o -0 dETEE%a
$ objdump —full-contents --section .rodata detecta

file format elf64-x86-64

detecta:
Contents of section .rodata:

400638 (01000200 00000000 00000000 00000000 . ccwecuwemecunns
400648 (54797065 20612063 6861723a 20004869 Type a char: _Hi

400658 |0a00 _

N

(Partial) addresses,
not offsets

RODATA is at ..00400638y,

Starts with some header info

Real start of RODATA is at ..00400648,,
"Type a char: " starts at..00400648,,
"Hi\n" starts at ..00400656,

7

~
Examining Machine Lang: TEXT

-
Additional Code

Link program; run objdump

No relocation
records!

\ Addresses,
not offsets ; - - -
| Let's examine one line at a time...

7

Additional code

-
movq $msg1, %rdi

~
call printf

Recall: Real addr of
RODATA = ..00400648,,

Linker replaced 00000000,, with
real addr of RODATA + 0
=..00400648H + O
=..00400648,,

= addr denoted by msgl

[addr

Linker replaced 00000000, with

0040038, — ..00400525,,
. FFFffed3,
-301,

Addr of printf
=..004003f8,

of printf] - [addr after cal 1]

-
call getchar

-
movq $msg2, %rdi

Addr of getchar
=..00400418,,

Linker replaced 00000000, with
[addr of getchar] - [addr after cal 1]
..00400418,, —..0040052a,
.Fffffeee,

-274,

Recall: Real addr of
RODATA = ..00400648,,

Linker replaced 00000000,, with
real addr of RODATA + e
=..00400648H + e,
=..00400656,

= addr denoted by msg2

-
call printf

-
Summary g!g

Linker replaced 00000000, with
[addr of printf] - [addr after call]

Addr of printf

=..004003f18,,

0040038, — ..00400540,,
. FFFFfebs,

-328,

P

x86-64 Machine Language
» CISC: many instructions, complex format
« Fields: prefix, opcode, modR/M, SIB, displacement, immediate

Assembler
» Reads assembly language file
» Generates TEXT, RODATA, DATA, BSS sections
» Containing machine language code
» Generates relocation records
» Writes object (.0) file

Linker
» Reads object (.0) file(s)
» Does resolution: resolves references to make code complete
» Does relocation: traverses relocation records to patch code

» Writes executable binary file

N %)

