"Princeton University 3 (b
Computer Science 217: Introduction to Programming Systems é»»; ConteXt Of thls LeCture %*-Hﬁ-%
First half lectures: “Programming in the large”
Second half lectures: “Under the hood”
Assembly Language: Starting Now Afterward
Part 1
‘ Application Program ‘
|anguage service
[Assembly Language| levels levels
our tour
Y 2
4 N N
Goals of this Lecture b\, Lectures vs. Precepts b, e
Approach to studying assembly language:
Help you learn: PP ying y languag
» Language levels
» The basics of x86-64 architecture
« Enough to understand x86-64 assembly language Study complete pgms Study partial pgms
» The basics of x86-64 assembly language : : . . : .
* Instructions to define global data 22 Véltth Tma" pgms, Begll: WI;[hISImpIed t
* Instructions to transfer data and perform arithmetic proceed to farge ones constructs, proceed to
complex ones
Emphasis on writing Emphasis on reading
code code
> Y
4 N N
Agenda b\ /4 High-Level Languages b\ 4
Language Levels Characteristics count = O;
. * Portable while (n>1)
Architecture « To varying degrees { count++;
Assembly Language: Defining Global Data + Complex it (n&l)
» One statement can do
Assembly Language: Performing Arithmetic much work n = n*3+1;
+ Expressive else
» To varying degrees n = n/2;
» Good (code functionality / }
code size) ratio
* Human readable
> ¢

4 N)
Machine Languages P\, e Assembly Languages P\, e
Characteristics Characteristics movl $0, %ri0d
0000 0000 0000 0000 0000 0000 0000 0000 1 e
* Not pOﬂ?PIe 0000 0000 0000 0000 0000 0000 0000 0000 * Not portable oop cmpl $1, %rilld
 Specific to hardware 9222 9120 1121 A120 1121 Al2l 7211 0000 » Each assembly lang Jle endloop
« Simple 0000 0001 0002 0003 0004 0005 0006 0007 instruction maps to one addl $1, %ri0d
. . 0008 0009 O0OA 000B 000C 000D OOOE OOOF i i i
* Each instruction does 0000 0000 0000 FELO FACE CAFE ACED CEDE . machine lang instruction movl %rlld, %eax
a simple task * Simple andl $1, %eax
* Not expressive « Each instruction does a ie else
« Each instruction performs ;ii‘; zzgz 2’:‘; [l’ig ggzz ‘;‘1’22 ;ggz gggg simple ta_sk movl %rlld, %eax
Ilttle Work B1B2 F1F5 0000 0000 0000 0000 0000 0000 * NOt eXpreSSIVe)) ggg: %::ﬁ’ &:113
» Poor (code functionality / » Poor (code functionality / addl 1, %riid
code size) ratio code size) ratio : :
* Not human readable « Human readable!!! else: 3™ endif
» Requires lots of effort! sarl $1, %rilld
» Requires tool support endif:
Jmp loop
endloop:
7 S
4 N)
Why Learn Assembly Language? :%: Why Learn x86-64 Assembly Lang?:%:
Q: Why learn assembly language? Why learn x86-64 assembly language?
A: Knowing assembly language helps you: Pros
» Write faster code * X86-64 is popular
* In assembly language » CourselLab computers are x86-64 computers
* In a high-level language! » Program natively on CourseLab instead of using an emulator
» Understand what’ s happening “under the hood” c
» Someone needs to develop future computer systems ons o
« Maybe that will be you! * X86-64 gssembly Ia.ngu.age is big
« Each instruction is simple, but...
» There are many instructions
* Instructions differ widely
) o)
4 N)
x86-64 Assembly Lang Subset), 4 Agenda P\
ch])

We’'ll study a popular subset
 As defined by precept x86-64 Assembly Language document

We'll study programs define functions that:
» Do not use floating point values
» Have parameters that are integers or addresses (but not structures)
» Have return values that are integers or addresses (but not
structures)
* Have no more than 6 parameters

Claim: a reasonable subset

Language Levels

Architecture

Assembly Language: Defining Global Data

Assembly Language: Performing Arithmetic

=)

Vs

John Von Neumann (1903-1957)

N

v

-
Von Neumann Architecture

In computing
» Stored program computers
 Cellular automata
« Self-replication

Other interests
» Mathematics
* Inventor of game theory
» Nuclear physics (hydrogen bomb)

Princeton connection
¢ Princeton Univ & IAS, 1930-1957

Known for “Von Neumann architecture (1950)”

* In which programs are just data in the memory
- Contrast to the now-obsolete “Harvard architecture’@

2

Control
Unit
ALU

Data bus

Y

-
Von Neumann Architecture

-
Von Neumann Architecture

RAM (Random Access Memory)
Conceptually: large array of bytes

« Contains data
(program variables, structs, arrays)
» and the program!

Instructions are
fetched from RAM

Control
Unit

ALU

So is data

Data bus

)

Registers
» Small amount of storage on the CPU
* Much faster than RAM
» Top of the storage hierarchy
» Above RAM, disk, ...

Control
Unit

ALU

Data bus

)

-
Registers (x86-64 architecture)

~

v

s

Registers (x86-64 architecture) 1!@

~

General purpose registers:

63 31 15 7 0
CEENCS
RBX ’ EBX W
RDX ’ EDX W

v)

General purpose registers (cont.):

63 31 15 7 0
RDI ’ EDI W

RSP is unique; see upcoming slide

8)

~

4 N
Registers (x86-64 architecture) g RSP Register g
low memory
General purpose registers (cont.): . .
RSP (Stack Pointer) register °
o . s . o + Contains address of top | RSP |— £
(low address) of current S
[re [R8D R&W function’s stack frame ¢
(@]
[Rro [RoD ROW <
[R10 [R10D [RIOW_[RIOBaS »
[R11 [RL1D [RIVW_ jREtEnn hah
[Fzz [Riz R e 'gh memory
[R13 [R13D e | Allows use of the STACK section of memory, and
[R1a [Ria0 RiaT e special-purpose stack manipulation instructions
[R15 [R15D [RI5W_pRESERN| (See Assembly Language: Function Calls lecture)
19/ 20/
4 N)
EFLAGS Register %. | | RIP Register L
Special-purpose register...
Special-purpose register... RIP (Instruction Pointer) register
. « Stores the location of the next instruction
EFLAGS.(FIags) reg.l.ster . » Address (in TEXT section) of machine-language instructions to
+ Contains CC (Condition nge) blt.S be executed next
 Affected by compare (cmp) instruction « Value changed:
* And many .o.thers. _) + Automatically to implement sequential control flow
* Used by conditional jump instructions + By jump instructions to implement selection, repetition
=Jje gne jl, jg, jle jge, jb, jbe, ja, jae, . .. =
(See Assembly Language: Part 2 lecture) _f:D
8
(2]
___RIP__ | v
X
]
|_
21/ - 22/
4 N)
Registers summary g Registers and RAM g

16 general-purpose 64-bit pointer/long-integer registers, many with stupid names:

rax, rbx, rex, rdx, rsi, rdi 18,19, 110, F11, 112, 113, 14, 115

“stack pointer”

sometimes used as
a “frame pointer”
or “base pointer”

If you're operating on 32-bit “int” data, use these stupid names instead:
eax, ebx, ecx, edx, esi, edi, ebp r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d

it doesn’t really make sense to put
32-bit ints in the stack pointer

2 special-purpose registers:

“condition codes” “program counter”

2)

Typical pattern:
* Load data from RAM to registers
* Manipulate data in registers
 Store data from registers to RAM

Many instructions combine steps

v

e
ALU

~
Control Unit

ALU (Arithmetic Logic Unit)
* Performs arithmetic and logic
operations

srci src2

operation —»' — EFLAGS

Data bus
dest

Control Unit
» Fetches and decodes each
machine-language instruction
» Sends proper data to ALU

Data bus

25) 26)
a a)
CPU Agenda a!ﬁ
CPU (Central Processing Unit) Language Levels
» Control unit Architect
» Fetch, decode, and execute rehitecture
* ALU Assembly Language: Defining Global Data
» Execute low-level operations
* Registers Assembly Language: Performing Arithmetic
» High-speed temporary storage
|
Data bus
27) 28)

~
Defining Data: DATA Section 1

~

Defining Data: DATA Section 2

Note:
.section instruction (to announce DATA section)
label definition (marks a spot in RAM)

_byte
-word
-long
-quad

instruction (1 byte)

instruction (2 bytes)
instruction (4 bytes)
instruction (8 bytes)

Note:

Can place label on same line as next instruction
-globl instruction

)

~

Defining Data: BSS Section

~
Defining Data: RODATA Section

9.

~

Note:
.section instruction (to announce BSS section)
-skip instruction

2y

Note:
.section instruction (to announce RODATA section)
.string instruction

2)

~

Agenda

~
Instruction Format

Language Levels
Architecture
Assembly Language: Defining Global Data

Assembly Language: Performing Arithmetic

2

Many instructions have this format:

* name: name of the instruction (mov, add, sub, and, etc.)

» byte = operands are one-byte entities
» word = operands are two-byte entities
« long = operands are four-byte entities
* quad = operands are eight-byte entitles

*

~

Instruction Format

~
Instruction Format

Many instructions have this format:

+ src: source operand
» The source of data
» Can be
» Register operand: %rax, %ebx, etc.
* Memory operand: 5 (legal but silly), someLabel
* Immediate operand: $5, $someLabel

%)

Many instructions have this format:

» dest: destination operand
» The destination of data
» Can be
» Register operand: %rax, %ebx, etc.
* Memory operand: 5 (legal but silly), someLabel
» Cannot be
* Immediate operand

)

4)

Performing Arithmetic: Long Data 3

~
Operands

.section "_bss"
length: .skip 4

static int length;
static int width;

static int perim; width: _skip 4
- perim: _skip 4
perim =

(length + width) * 2; .section ".text"

movl length, %eax

Note: addl width, %eax
. . I 31, %
movl instruction S
. . movl %eax, perim
addl instruction
sall instruction

Register operand
Immediate operand
Memory operand

-section instruction (to announce TEXT section) 37)

Immediate operands
= $5 = use the number 5 (i.e. the number that is available
immediately within the instruction)
« $i = use the address denoted by i (i.e. the address that is
available immediately within the instruction)
» Can be source operand; cannot be destination operand

Register operands
= %rax = read from (or write to) register RAX
» Can be source or destination operand

Memory operands
« 5 = load from (or store to) memory at address 5 (silly; seg fault)
= 1 = load from (or store to) memory at the address denoted by i
» Can be source or destination operand (but not both)
» There’ s more to memory operands; see next lecture

»)

~
Performing Arithmetic: Byte Data

.section "_data"
grade: .byte "B*

static char grade = "B";

grade--;

.section ".text"
Option 1
Note: movb grade, %al
Comment subb $1, %al

movb instruction movb %al, grade

subb instruction
decb instruction

Option 2
subb $1, grade

Option 3

decb grade
»)
> jClicker Question
Q: What would happen if we used graéz?‘:t;;:e ::E.‘ta
subl instead of subb?
.section ".text"
Option 1
A. Would always work correctly novb grade, %al
B. Would always work incorrectly subb 31, Wal
movb %al, grade
C. Would sometimes work correctly @
Option 2
D. This code would work, but subb $1, grade
something else might go wrong o
Option 3
that would cause you sleepless e

nights of painful debugging

> jClicker Question

Q: What would happen if we used -section *data
. grade: .byte "B
movl instead of movb?
.section ".text"
Option 1
A. Would always work correctly novb grade, %al
B. Would always work incorrectly subb 31, Wal
movb %al, grade
C. Would sometimes work correctly @
Option 2
D. This code would work, but subb $1, grade
something else might go wrong o
Option 3
that would cause you sleepless i

nights of painful debugging

~
More Arithmetic Instructions

add{q,I,w,b} srcIRM, destRM dest += src
sub{qg,l,w,b} srcIRM, destRM dest -= src
inc{q,l,w,b} destRM dest++
dec{q,l,w,b} destRM dest--
neg{q,l,w,b} destRM dest = -dest

Operand notation:
 src = source; dest = destination
* R = register; | immediate; M = memory

2

-
Data Transfer Instructions

-
Multiplication and Division

2

s

Signed multiplication and division instructions

See Bryant & O’ Hallaron book for description of
signed vs. unsigned multiplication and division

“)

-
Multiplication and Division a!g

~

-
Bit Manipulation

Unsigned multiplication and division instructions

See Bryant & O’ Hallaron book for description of
signed vs. unsigned multiplication and division

£

Bitwise instructions

-
Summary g!g

-
Appendix

Language levels

The basics of computer architecture
» Enough to understand x86-64 assembly language

The basics of x86-64 assembly language
« Instructions to define global data
* Instructions to perform data transfer and arithmetic

To learn more
» Study more assembly language examples
« Chapter 3 of Bryant and O Hallaron book
» Study compiler-generated assembly language code
e gcc217 -S somefile.c

7

Big-endian vs little-endian byte order

4 N
Byte Order &!.B Byte Order Example 1
x86-64 is a little endian architecture
« Least significant byte of multi-byte entity
is stored at lowest memory address
« “Little end goes first” 1000 [00000101
) 1001 |00000000
The int 5 at address 1000: 1002 [00000000
1003 |00000000
Some other systems use big endian
» Most significant byte of multi-byte entity
is stored at lowest memory address
 “Big end goes first” Byte 0: ff Byte 0: 00
1001 [66000000 ﬂﬁtpm e) yte 1: 77 Oulputona gy g o
I -endlan ia- i
The int 5 at address 1000: 1002 [00000000 rr?achi ne Byte 2: 33 DIg enhqlan Byte 2: 77
1003 [00000101 Byte 3: 00 Machine Byte 3 Ff
*))

~

Byte Order Example 2

-
Byte Order Example 3

9.

Note:

Flawed code; uses “b”
instructions to manipulate
a four-byte memory area

Note:
Flawed code; uses “I”
instructions to manipulate
a one-byte memory area

