
1

Modules and Interfaces

Princeton University
Computer Science 217: Introduction to Programming Systems

1
Barbara Liskov

Turing Award winner 2008,
“For contributions to practical and
theoretical foundations of programming
language and system design, especially
related to data abstraction, fault tolerance,
and distributed computing.”

COS 217 Midterm
When/where?

• In class, Thursday October 25; rooms to be announced

What?
• C programming, including string and stdio
• Numeric representations and types in C
• Programming in the large: modularity, building, testing, debugging
• Readings, lectures, precepts, assignments, through this week
• Mixture of short-answer questions and writing snippets of code

How?
• Closed book, closed notes
• No electronic anything
• Interfaces of relevant functions will be provided

Old exams and study guide will be posted on schedule page
2

Goals of this Lecture

Help you learn:
• How to create high quality modules in C

Why?
• Abstraction is a powerful (the only?) technique available for

understanding large, complex systems
• A software engineer knows how to find the abstractions

in a large program
• A software engineer knows how to convey a large program’s

abstractions via its modularity

33

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

4

5

Encapsulation

A well-designed module encapsulates data
• An interface should hide implementation details
• A module should use its functions to encapsulate its data
• A module should not allow clients to manipulate the data directly

Why?
• Clarity: Encourages abstraction
• Security: Clients cannot corrupt object by changing its data in

unintended ways
• Flexibility: Allows implementation to change – even the data

structure – without affecting clients

Abstract Data Type (ADT)
A data type has a representation

and some operations:

struct Node {
int key;
struct Node *next;

};

struct List {
struct Node *first;

};

struct List * new(void) {
struct List *p;
p=(struct List *)malloc (sizeof *p);
assert (p!=NULL);
p->first = NULL;
return p;

}

void insert (struct list *p, int key) {
struct Node *n;
n = (struct Node *)malloc(sizeof *n);
assert (n!=NULL);
n->key=key; n->next=p->first; p->first=n;

} 6

struct List;

struct List * new(void);
void insert (struct list *p, int key);
void concat (struct list *p,

struct list *q);
int nth_key (struct list *p, int n);

An abstract data type has a
hidden representation;
all “client” code must access
the type through its interface:

Barbara Liskov, a pioneer in CS

"An abstract data type defines a class of abstract
objects which is completely characterized by the
operations available on those objects. This means
that an abstract data type can be defined by defining
the characterizing operations for that type."

Barbara Liskov and Stephen Zilles.
"Programming with Abstract Data Types."
ACM SIGPLAN Conference on Very
High Level Languages, April 1974.

7

list_linked.c
#include "list.h"

struct List * new(void) {
struct List *p = (struct List *)malloc(sizeof(*p));
p->first=NULL;
return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... }

#include "list.h"

int f(void) {
struct List *p, *q;
p = new();
q = new();
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p);
return nth_key(q,1);

}

client.c

Encapsulation with ADTs (wrong!)
list.h

struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List * new(void);
void insert (struct List *p, int key);
void concat (struct List *p,

struct List *q);
int nth_key (struct List *p, int n);

If you put the
representation here,

then it’s not an
abstract data type,
it’s just a data type.

(Many C programmers
program this way because

they don’t know any
better.)

8

Encapsulation with ADTs (right!)
list.h

#include "list.h"

int f(void) {
struct List *p, *q;
p = new();
q = new();
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p);
return nth_key(q,1);

}

client.c list_linked.c
#include "list.h"

struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List * new(void) {
struct List *p = (struct List *)malloc(sizeof(*p));
p->first=NULL;
return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... } 9

struct List;

struct List * new(void);
void insert (struct List *p, int key);
void concat (struct List *p,

struct List *q);
int nth_key (struct List *p, int n);

Including only the
declaration in header

file enforces the
abstration: it keeps

clients from
accessing fields of
the struct, allowing
implementation to

change

This is OK, but not ideal.
Client programs relying on unspecified behavior
might break with a new implementation.

Doctor, it
hurts when
I do this

Then don’t
do that!

Specifications
If you can’t see the representation (or
the implementations of insert,
concat, nth_key), then how are
you supposed to know what they do?

struct List;

struct List * new(void);
void insert (struct list *p, int key);
void concat (struct list *p,

struct list *q);
int nth_key (struct list *p, int n);

A List p represents a sequence of integers σ.

Operation new() returns a list p representing the empty sequence.

Operation insert(p, i), if p represents σ, causes p to now represent i ∙σ.

Operation concat(p, q), if p represents σ1 and q represents σ2,
causes p to represent σ1∙σ2 and leaves q representing σ2.

Operation nth_key(p, n), if p represents σ1∙i ∙σ2 where the length of σ1 is n,
returns i ; otherwise (if the length of the string represented by p is ≤ n),
it returns an arbitrary integer.

10

Reasoning About Client Code

int f(void) {
struct List *p, *q;
p = new();
q = new();
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p);
return nth_key(q,1);

}

p:[]
p:[] q:[]
p:[6] q:[]
p:[7,6] q:[]
p:[7,6] q:[5]
p:[7,6,5] q:[]
p:[] q:[7,6,5]
return 6

11

struct List;

struct List * new(void);
void insert (struct list *p, int key);
void concat (struct list *p,

struct list *q);
int nth_key (struct list *p, int n);

The specifications allow
reasoning about the effects of
client code.

typedef struct List *List_T;

List_T new(void);

void insert (List_T p, int key);

void concat (List_T p, List_T q);

int nth_key (List_T p, int n);

void free_list (List_T p);

12

C is not inherently an object-oriented language, but can use
language features to encourage object-oriented thinking

• Interface provides List_T abbreviation for client
• Interface encourages client to think of objects (not structures)

and object references (not pointers to structures)
• Client still cannot access data directly; data is opaque to the client

Object-Oriented Thinking

"Opaque" pointer type

iClicker Question
Q: What’s the weakest assertion you can make that

guarantees the following code won’t crash:
int a[1000]; int i, c;
assert (. . .);
c=getchar(); i=0;
while (isalpha(c))

{ a[i++]=c; c=getchar(); }
a[i]=‘\0’;

A. assert (strlen(a)<1000)
B. assert (sizeof(stdin)<1000)
C. assert (i<1000);
D. assert (1);
E. assert (0);

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

14

15

Resource Management
A well-designed module manages resources consistently

• A module should free a resource if and only if the module has
allocated that resource

• Examples
• Object allocates memory object frees memory
• Object opens file object closes file

Why?
• Allocating and freeing resources at different levels is error-prone

• Forget to free memory memory leak
• Forget to allocate memory dangling pointer, seg fault
• Forget to close file inefficient use of a limited resource
• Forget to open file dangling pointer, seg fault

16

Resource Management in stdio

fopen() allocates memory for FILE struct,
obtains file descriptor from OS

fclose() frees memory associated with FILE struct,
releases file descriptor back to OS

17

Resources in Assignment 3
Who allocates and frees the key strings in symbol table?

Reasonable options:
(1) Client allocates and frees strings

• SymTable_put() does not create copy of given string
• SymTable_remove() does not free the string
• SymTable_free() does not free remaining strings

(2) SymTable object allocates and frees strings
• SymTable_put() creates copy of given string
• SymTable_remove() frees the string
• SymTable_free() frees all remaining strings

Our choice: (2)
• With option (1) client could corrupt the SymTable object

(as described in last lecture)

18

Passing Resource Ownership
Violations of expected resource ownership should be
noted explicitly in function comments

somefile.h

…

void *f(void);
/* …

This function allocates memory for
the returned object. You (the caller)
own that memory, and so are responsible
for freeing it when you no longer
need it. */

…

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

19 20

Consistency

A well-designed module is consistent
• A function's name should indicate its module

• Facilitates maintenance programming
• Programmer can find functions more quickly

• Reduces likelihood of name collisions
• From different programmers, different software vendors, etc.

• A module's functions should use a consistent parameter order
• Facilitates writing client code

21

Consistency in string.h
string

/* string.h */

size_t strlen(const char *s);
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);
char *strcat(char *dest, const char *src);
char *strncat(char *dest, const char *src, size_t n);
int strcmp(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
char *strstr(const char *haystack, const char *needle);
void *memcpy(void *dest, const void *src, size_t n);
int memcmp(const void *s1, const void *s2, size_t n);
…

Are function names
consistent?

21

Is parameter order
consistent?

