"Princeton University v 1 (v)
Computer Science 217: Introduction to Programming Systems ﬁw-aﬁ Goals Of thls LeCtu re ﬁw-aﬁ
Help you learn (or refresh your memory) about:
» Common data structures: linked lists and hash tables
Data Structures Why? Deep motivation:
« Common data structures serve as “high level building blocks”
A power programmer:
E/ @ + Rarely creates programs from scratch
+ Often creates programs using high level building blocks
@/, @/, E Why? Shallow motivation:
» Provide background pertinent to Assignment 3
@ « ... esp. for those who have not taken COS 226
Y 2
4 N 7 N
Symbol Table API % | | Agenda L
Maintain a collection of key/value pairs Linked lists
» Each key is a string; each value is an int
* Unknown number of key-value pairs Hash tables
Examples Hash table issues
* (student name, grade)
* (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
* (baseball player, number)
* (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
* (variable name, value)
 (“maxLength”, 2000), (“i”, 7), (“j”, -10)
> Y
4 N 7 N
Linked List Data Structure g Linked List Data Structure g
struct Node
{ const char *key;
int value; ;
i Your Assignment _3
i data structures will
be more elaborate
struct List
{ struct Node *first;
b Really this is the Really this is the
address at which address at which
truct struct struct “Ruth” resides truct “Ruth” resides
i::c Node Node i::c
i i
40/ i NU3LL
S)

4 N 7 N
Linked List Algorithms % | | Linked List Algorithms L
Create Search
« Allocate List structure; set first to NULL » Traverse the list, looking for given key
» Performance: O(1) = fast » Stop when key found, or reach end
. . » Performance: ??7?
Add (no check for duplicate key required)
* Insert new node containing key/value pair at front of list
» Performance: O(1) = fast
Add (check for duplicate key required)
» Traverse list to check for node with duplicate key
« Insert new node containing key/value pair into list
» Performance: O(n) = slow
7 2
4 N
> iClicker Question Linked List Algorithms)
Q: How fast is searching for a key in a linked list?
Search
» Traverse the list, looking for given key
» Stop when key found, or reach end
A. Always fast — O(1) » Performance: O(n) = slow
B. Always slow — O(n) Free
C. On average, fast * Free Node structures while traversing
» Free List structure
D. On average, slow « Performance: O(n) = slow
o)
4 N 7 N
Agenda g Hash Table Data Structure g
Array of linked lists Really this s the
. . dd t which
Llnked |IStS enum {BUCKET_ COUNT = 1024} ; ﬁRurt(;'S'Sr:Si\gelsc
Hash tables ?t“éiﬁs‘é“:i’;"‘*key,.
int value;
Hash table issues RIS PR o
F struct
struct Table Blndlng
;; struct Binding *buckets[BUCKET_ COUNT] ; W
4
Your Assignment 3 —
data structures will
be more elaborate
1)

=)

s

Hash Table Data Structure

)

s

Hash Table Example

Binding

Bucket

BUCKET_COUNT-1

Hash function maps given key to an integer
Mod integer by BUCKET COUNT to determine proper bucket

Example: BUCKET COUNT =7

Add (if not already present) bindings with these keys:
the, cat, in, the, hat

13/ 14/
4 N 7 N
Hash Table Example (cont.) ﬁv 2 Hash Table Example (cont.) ﬁv i
First key: “the” Add binding with key “the” and its value to buckets[1]
« hash(“the”) = 965156977; 965156977 % 7 = 1
Search buckets [1] for binding with key “the”; not found
0 0
1 1 [Ehe]
2 >]
3 3 o
4 4
5 5
6 6
15/ 16/
4 N 7 N
Hash Table Example (cont.) ﬁv 2 Hash Table Example (cont.) ﬁv i
Second key: “cat” Add binding with key “cat” and its value to buckets [2]
 hash(“cat”) = 3895848756; 3895848756 % 7 = 2
Search buckets [2] for binding with key “cat”; not found
0 0
1 1 [Ehe]
2 >]
3 3 cat
4 4
5 5
6 6
17/ 18/

s

v]

Hash Table Example (cont.)

=

G

s

~

v]

2

Hash Table Example (cont.)

Third key: “in”
« hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets [5] for binding with key “in”; not found

cat

o WwWwdNhKHO

5)

Add binding with key “in” and its value to buckets[5]

cat

ok WwWwdNhKEH O

»)

s

Hash Table Example (cont.)

ot

K

s

~

v]

=

Hash Table Example (cont.)

{

Fourth word: “the”
« hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets [1] for binding with key “the”; found it!
» Don’t change hash table

cat

ok WwWdNhKHO

Y

Fifth key: “hat”
+ hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets [2] for binding with key “hat”; not found

cat

o WwWdNhKEHO

2)

s

v]

Hash Table Example (cont.)

=

~

s

Hash Table Algorithms

Add binding with key “hat” and its value to buckets [2]
« At front or back? Doesn't matter
« Inserting at the front is easier, so add at the front

0

1 The

2 |

3 at
4 L]
5 L~ []
6 |

2)

Create
» Allocate Table structure; set each bucket to NULL
» Performance: O(1) = fast

Add

Hash the given key

Mod by BUCKET_COUNT to determine proper bucket

Traverse proper bucket to make sure no duplicate key

Insert new binding containing key/value pair into proper bucket
Performance: ???

v

4 N
I> iClicker Question Hash Table Algorithms P\, e
Q: How fast is adding a key to a hash table?
Search
» Hash the given key
* Mod by BUCKET COUNT to determine proper bucket
A. Always fast » Traverse proper bucket, looking for binding with given key
B. Usually fast, but depends on how many keys * Stop when key found, or reach end
are in the table » Performance: Usually O(1) = fast
C. Usually fast, but depends on how many keys Free o
hash to the same bucket » Traverse each bucket, freeing bindings
* Free Table structure
D. Usually slow + Performance: O(n) = slow
E. Always slow
%)
4 N N
Agenda b\, 1 How Many Buckets? P\, A
Many!
Linked lists » Too few = large buckets = slow add, slow search
But not too many!
Hash tables * Too many = memory is wasted
Hash table issues This is OK:
0
S=
BUCKET COUNT-1
27/ @ 28/
4 N\ N
What Hash Function? :®: | | How to Hash Strings? e\ 4

Should distribute bindings across the buckets well
* Distribute bindings over the range 0, 1, .., BUCKET COUNT-1
« Distribute bindings evenly to avoid very long buckets

This is not so good:

5E8B8E8E

What would be the
worst possible hash
function?

BUCKET COUNT-1

29)

Simple hash schemes don't distribute the keys evenly
* Number of characters, mod BUCKET COUNT
* Sum the numeric codes of all characters, mod BUCKET COUNT

A reasonably good hash function:
» Weighted sum of characters s; in the string s
e (& a®s;) mod BUCKET COUNT
+ Bestif a and BUCKET_COUNT are relatively prime
+ E.g., a=65599, BUCKET_COUNT = 1024

»)

~

How to Hash Strings?

~

~
How to Protect Keys?

9.

A bit of math, and translation to code, yields:

Suppose Table_add () function contains this code:

2)

~

How to Protect Keys?

9.

~

~
How to Protect Keys?

9.

Problem: Consider this calling code:
- k

t

I
2

Problem: Consider this calling code:

k

Il |

EEET
*

~

~
How to Protect Keys?

9.

~

~
How to Protect Keys?

9.

Solution: Table_add () saves a defensive copy
of the given key

Now consider same calling code:

< I

)

-
How to Protect Keys?

s

Who Owns the Keys?

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";

k|Gehrig\0

Table add(t, k, 3);
strcpy (k, "Gehrig");

Hash table is

not corrupted

Then the hash table owns its keys

» That is, the hash table owns the memory in
which its keys reside

= Hash_free () function must free the memory

in which the key resides

37/ 38/
4 N (o= . . N
Princeton University
Summary ﬁ!;é Computer Science 217: Introduction to Programming Systems ﬁ!;g

Common data structures and associated algorithms
* Linked list
* (Maybe) fast add
+ Slow search
» Hash table
+ (Potentially) fast add
+ (Potentially) fast search
* Very common

Hash table issues
» Hashing algorithms
» Defensive copies
» Key ownership

»)

Debugging (Part 2)

w4

-
Agenda

s

Look for Common DMM Bugs

(9) Look for common DMM bugs
10) Diagnose seg faults using gdb
11) Manually inspect malloc calls

12) Hard-code malloc calls

14) Use Meminfo

(
(
(
(13) Comment-out free calls
(
(15) Use Valgrind

Y

Some of our favorites:

int *p; /* value of p undefined */

*p = somevalue;

char *p; /* value of p undefined */

fgets (p, 1024, stdin);

int *p;

; = (int*)malloc (sizeof (int)) ;

*p = 5;
free(p) ;
*p = 6;

What are
the
errors?

2

4 N)

Look for Common DMM Bugs g Agenda g
Some of our favorites: (9) Look for common DMM bugs
int *p; (10) Diagnose seg faults using gdb

11) Manually inspect malloc calls

; = (int*)malloc (sizeof (int)) ;

*p = 5; 12) Hard-code malloc calls

P = (int*)malloc(sizeof (int)) ;

What are
the
errors?

int *p;

14) Use Meminfo

(
(
(13) Comment-out free calls
(
(15) Use Valgrind

; = (int*)malloc (sizeof (int)) ;

*p = 5;
"f.ree (p);
Eree (p);
43/ 44/
4 N\ N

Diagnose Seg Faults Using GDB Agenda

(9) Look for common DMM bugs

Segmentation fault => make it happen in gdb (10) Diagnose seg faults using gdb
» Then issue the gdb where command

» Output will lead you to the line that caused the fault

* But that line may not be where the error resides! (12) Hard-code malloc calls

(11) Manually inspect malloc calls

(13) Comment-out free calls
(14) Use Meminfo
(15) Use Valgrind

42/ 45/

4 N 7 N
Manually Inspect Malloc Calls Manually Inspect Malloc Calls

Some of our favorites:

Manually inspect each call of malloc ()

+ Make sure it allocates enough memory s SEl S Mhalile; TeEiel;
char *s2;
s2 = (char*)malloc(strlen(sl));

strcpy(s2, sl);

Do the same for calloc () and realloc ()

What are
the
errors?

char *sl = "Hello";

char *s2;

s2 = (char*)malloc(sizeof(sl));
strcpy(s2, sl);

long double *p;
P = (long double*)malloc(sizeof (long double*)) ;

long double *p;
P = (long double*)malloc(sizeof (p));

41/ 4{/

: Al A
Agenda b\, Hard-Code Malloc Calls b\,
(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb Temporarily change each call of malloc () to request a

. large number of bytes
(11) Manually inspect malloc calls . Say, 10000 bytes
(12) Hard-code malloc calls « If the error disappears, then at least one of your calls is requesting
too few bytes

(13) Comment-out free calls
(14) Use Meminfo Then incrementally restore each call of malloc () toits
(15) Use Valgrind previous form , ,

* When the error reappears, you might have found the culprit

Do the same for calloc () and realloc ()
) 50)

4 N 7 N
Agenda g Comment-Out Free Calls g
(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb Temporarily comment-out every call of free ()

. « If the error disappears, then program is
(11) Manually inspect malloc calls » Fresing memory 100 S00m, of
(12) Hard-code malloc calls * Freeing memory that already has been freed, or

» Freeing memory that should not be freed,

(13) Comment-out free calls - Etc.
(14) Use Meminfo

) Then incrementally “comment-in” each call of free ()
(1 5) Use Valgrind » When the error reappears, you might have found the culprit

51/ 52/

: Al A
Agenda b\, Use Meminfo b\,
(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb Use the Meminfo tool

. » Simple tool
(11) Manually inspect malloc calls « Initial version written by Dondero
(12) Hard-code malloc calls * Current version written by COS 217 alumnus RJ Liljestrom
» Reports errors after program execution
(13) Comment-out free calls + Memory leaks
(14) Use Meminfo * Some memory corruption

» User-friendly output

(15) Use Valgrind
Appendix 1 provides example buggy programs

Appendix 2 provides Meminfo analyses

53/ 54/

~

Agenda

~

Use Valgrind

(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

“)

Use the Valgrind tool

* Complex tool

» Written by multiple developers, worldwide
* See www.valgrind.org

» Reports errors during program execution
* Memory leaks
» Multiple frees
+ Dereferences of dangling pointers
* Memory corruption

» Comprehensive output
» But not always user-friendly

)

~

Use Valgrind

~

Summary

~

2

Appendix 1 provides example buggy programs

Appendix 3 provides Valgrind analyses

7

Strategies and tools for debugging the DMM aspects of your

code:
» Look for common DMM bugs
» Diagnose seg faults using gdb
* Manually inspect malloc calls
» Hard-code malloc calls
» Comment-out free calls
* Use Meminfo
» Use Valgrind

%)

~

Appendix 1: Buggy Programs

~

Appendix 1: Buggy Programs

leak.c

Memory leak:
Memory allocated at line 5 is leaked

®)

doublefree.c

Multiple free:
Memory allocated at line 5 is freed twice

“)

~

Appendix 1: Buggy Programs

~

Appendix 1: Buggy Programs

danglingptr.c

Dereference of dangling pointer:
Memory accessed at line 9 already was freed

)

toosmall.c

Memory corruption:
Too little memory is allocated at line 5
Line 6 corrupts memory

~

Appendix 2: Meminfo

~

Appendix 2: Meminfo

Meminfo can detect memory leaks:

Meminfo can detect memory corruption:

~

Appendix 2: Meminfo

~

Appendix 3: Valgrind

Meminfo caveats:
« Don’ t mix .o files built with gec217 and gcc217m

= meminfo*.out files can be large
» Should delete frequently

» Programs built with gec217m run slower than those built with
gcc2l7

« Don’ t build with gecc217m when doing timing tests

Valgrind can detect memory leaks:

~

Appendix 3: Valgrind

~

Appendix 3: Valgrind

Valgrind can detect memory leaks:

Valgrind can detect multiple frees:

~

Appendix 3: Valgrind

~

Appendix 3: Valgrind

Valgrind can detect dereferences of dangling pointers:

Valgrind can detect memory corruption:

Continued on next slide

“)
a N 7
Appendix 3: Valgrind g!g Appendix 3: Valgrind g!g

Valgrind can detect memory corruption (cont.):

Continued from previous slide

7

Valgrind caveats:

» Not intended for programmers who are new to C
* Messages may be cryptic

» Suggestion:
» Observe line numbers referenced by messages
+ Study code at those lines
* Infer meanings of messages

