"Princeton University

Computer Science 217: Introduction to Programming Systems

P
)

~

s

N
For Your Amusement g

Program and
Programming Style

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 1

Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.
-- Martin Fowler

Good code is its own best documentation. As you're about to
add a comment, ask yourself, "How can | improve the code
so that this comment isn't needed?"

-- Steve McConnell

Programs must be written for people to read, and only
incidentally for machines to execute.
-- Abelson / Sussman

Motivation for Program Style

Who reads your code?
» The compiler
» Other programmers

EypedeFlstricE(dot ey T vecsvecl UL EIRck: s~ (202002 7207): SErice sphere{ vec
cen,color;double rad,kd,ks .kt.kl,lr}*s thest, sph[] {0.,6.,.5,1
d 3,0.,.05,1.2,1..8. -.5 1, s -8,

8170006153—312

H ouble u,b,tmin,sqrt(),tan();double vdot(A, B)vec A
B x+A y*B y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.y+=a*A z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1l./sqrt(
vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s--sph)b=vdot(D,U=vcomb(-1.,P,s-cen)),u=b*b-vdot(U,U)+s-rad*s -
rad.u—uo?sqrt(u).lesl.u—b—ule—7’?b-u.b+u. u=1le-7&&u<tmin?best=s,u: tmin;return
best;}vec trace(level,P,D)vec P,D;{do d,eta,e;vec N,color; struct
sphere*s,*1;if(1level--)return black; intersect(P,D));else return
amb;color=amb;eta=s-ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s-cen
))):if(d<0)N=vcomb(-1..N,black),eta=1/eta,d= -d;I=sph+5:while(I--sph)if((e=l -
kI*vdot(N,U=vuni t(vcomb(-1.,P, I-cen))))0&&intersect(P,U)==1)color=vcomb(e ,I-
color,color);U=s-color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta* eta*(1-
d*d);return vcomb(s-kt,e0?trace(level ,P,vcomb(eta,D,vcomb(eta*d-sqrt
(e).N.black))):black,vconb(s-ks, trace(level ,P,vcomb(2*d,N,D)) ,vconb(s-kd,
collor,veomb(s-kl,U,black)))) ; JmainQ{printf("%d %d\n",32,32) ;whi le(yx<32*32)
U.x=yx%32-32/2,U.2=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261) ,U=vcomb(255. ,
trace(3,black,vunit(U)).black),printf("%.0f %.0F %.0f\n",U):}

This is a working ray tracer! (courtesy of Paul Heckbert)

S

J 2
4 N 7 N
Goals of this Lecture g Agenda g
Help you learn about: Program style
» Good program style * Qualities of a good program
* Good programming style .
prog gsy Programming style
Why? + How to write a good program quickly
» A well-styled program is more likely to be correct than a poorly-
styled program
» A well-styled program is more likely to stay correct (i.e. is more
maintainable) than a poorly-styled program
» A power programmer knows the qualities of a well-styled program,
and how to compose one quickly
2 +
4 N)

Motivation for Program Style

Why does program style matter?
 Correctness

* The clearer a program is, the more likely it is
to be correct
* Maintainability
* The clearer a program is, the more likely it is
to stay correct over time

Good program = clear program

S

4 4 N
Choosing Names), Using C Idioms P\,
Use descriptive names for globals and functions Use C idioms
- E.g. display, CONTROL, CAPACITY R . Exzmpl:: Set ealch z;lrray elim.ent to 1..0.
. . ~ i + Bad code (complex for no obvious gain
Use concise names for local variables proportional to (comp gain)
scope of variable —
» E.g., 1 (not arrayIndex) for loop variable 0= 03 _
S while (i <= n-1)
Use case judiciously array[i++] = 1.0;
» E.g., Stack_push (Module_function)
CAPACITY (constant))) . .
K * Good code (not because it's vastly simpler—it isn't—but because it uses a
buf (local variable) standard idiom that programmers can grasp at a glance)
Use a consistent style for compound names for (i = 0; i <n; i++)
« E.g, frontsize, frontSize, front_size array[i] = 1.0;
Use active names for functions that do something
* E.g., getchar(), putchar(), Check_octal (), etc. « Don’ t feel obliged to use C idioms that decrease clarity
Not necessarily for functions that are something: sin(), sqrt() 7) s)

/

~
Revealing Structure: Expressions ;

el
o L]

Parenthesize for correctness and to resolve ambiguity
« Example: read and print character until end-of-file

* Broken code

while (c = getchar() != EOF)
putchar(c);

» Working, idiomatic code

while ((c = getchar()) != EOF)
putchar(c);

2/

/

~
Revealing Structure: Expressions

]

el
o L]

Parenthesize for correctness and to resolve ambiguity
» Example: Check if integer n satisfies j < n < k

* Common code

if G <n&n<k |

Clearer code (maybe)

if (G <n) & (n < K) |

It's clearer depending on whether your audience can be
trusted to know the precedence of all the C operators.
Use your judgment on this!

> jClicker Question

Q: Does the following code work to check if integer n
satisfies j < n < k?

if G <n&n<k |

A. No,needstobe if ((< n) && (n < k))
B. Correct, but I'd parenthesize anyway

C. Correct, and I'd leave it alone

> jClicker Question

Q: Does the following code work to check if integer n
satisfies j < n < k?

G (A >= K 11 (0 <=)|

A. No, incorrect

B. Not sure — | can't be expected to apply DeMorgan's laws
during a 10 AM lecture

C. Correct, but I'd never write such a monstrosity

~

~
Revealing Structure: Expressions g!g

4)

Revealing Structure: Expressions g!g

Use natural form of expressions
» Example: Check if integer n satisfies j < n < k
» Bad code

» Good code

» Conditions should read as you'd say them aloud
» Not “Conditions shouldn’t read as you’'d never say them in
other than a purely internal dialog!”

Break up complex expressions
» Example: Identify chars corresponding to months of year
» Bad code

» Good code — lining up things helps

» Very common, though, to elide parentheses

~

Revealing Structure

-
Revealing Structure: Spacing

Perhaps better in this case: a switch statement

Use readable/consistent spacing
« Example: Assign each array element a[j] to the value j.
» Bad code

» Good code

« Often can rely on auto-indenting feature in editor

~

~
Revealing Structure: Indentation a!g

4)

Revealing Structure: Indentation a!g

Use readable/consistent/correct indentation
» Example: Checking for leap year (does Feb 29 exist?)

Use “else-if” for multi-way decision structures
« Example: Comparison step in a binary search.

+ Bad code low=0
E—

mid=3

» Good code high=6
e

e I

Revealing Structure: “Paragraphs” g,!g

e I

Revealing Structure: “Paragraphs” g,!g

Use blank lines to divide the code into key parts

Use blank lines to divide the code into key parts

a)
Composing Comments

e I
Composing Comments g!g

£l

Master the language and its idioms
* Let the code speak for itself
» And then...

Comment paragraphs of code, not lines of code
» E.g., “Sort array in ascending order”

Comment global data
» Global variables, structure type definitions, field definitions, etc.

Compose comments that agree with the code!!!
» And change as the code itself changes!!!

%)

Comment sections (“paragraphs”) of code, not lines of code

-
Composing Comments

a)
Composing Function Comments g!g

£l

Describe what a caller needs to know to call the function

properly
 Describe what the function does, not how it works
» Code itself should clearly reveal how it works...
« If not, compose “paragraph” comments within definition

Describe input
» Parameters, files read, global variables used

Describe output
» Return value, parameters, files written, global variables affected

Refer to parameters by name

4 N)
Composing Function Comments :%: Composing Function Comments :%:
Bad function comment Good function comment
/* decomment.c */ /* decomment.c */
/* Read a character. Based upon the character and /* Read a C program from stdin. Write it to
the current DFA state, call the appropriate stdout with each comment replaced by a single
state-handling function. Repeat until space. Preserve line numbers. Return O if
end-of-file. */ successful, EXIT_FAILURE if not. */
int main(void) int main(void)
{ {
} }
Describes how the function works * Describes what the function does
25/ 26/
4 N)
Using Modularity b\ /4 Modularity Examples b\ 4
Abstraction is the key to managing complexity
» Abstraction is a tool (the only one?) that people use to . .
understand complex(system);) that peop Examples of function-level modularity
+ Abstraction allows people to know what a (sub)system does * Character I/O functions such as getchar () and putchar()
without knowing how * Mathematical functions such as sin() and gcd(Q)
o))) * Function to sort an array of integers
Proper modularity is the manifestation of abstraction
» Proper modularity makes a program's abstractions explicit . .
+ Proper modularity can dramatically increase clarity Exampl.es of file-level modularity
= Programs should be modular * Assignment 3.
* And all the other assignments.
However
» Excessive modularity can decrease clarity!
» Improper modularity can dramatically decrease clarity!!!
= Programming is an art
27/ 28/
4))
Program Style Summary P\, e Agenda b, e
Good program = clear program Program style
. * Qualities of a good program
Qualities of a clear program goodprog
« Uses appropriate names Programming style
» Uses common idioms * How to write a good program quickly
» Reveals program structure
» Contains proper comments
* Is modular
29/ 30/

4 N)
Bottom-Up Design P\, e Bottom-Up Design P\, e
Bottom-up design ® Bottom-up design in programming
« Design one part of the system in detail « Compose part of program in complete detail
» Design another part of the system in detail » Compose another part of program in complete detail
» Combine » Combine
» Repeat until finished » Repeat until finished
I . * Unlikely to produce a good program
Bottom-up design in painting T2 yiop goodprog
* Paint part of painting in complete detail
« Paint another part of painting in complete detail
» Combine
» Repeat until finished
« Unlikely to produce a good painting
(except sometimes: see the movie “Tim’'s Vermeer”)
31/ 32/
4 N)
Top-Down Design P\, e Top-Down Design P\, e
Top-down design © Top-down design in programming
« Design entire product with minimal detail » Define main() function in pseudocode with minimal detail
 Successively refine until finished * Refine each pseudocode statement
» Small job = replace with real code
» Large job = replace with function call
. . Lo » Repeat in (mostly) breadth-first order until finished
Top-down design in painting)
» Sketch the entire painting with minimal detail 1 » Bonus: Product is naturally modular
» Successively refine until finished =
33/ 34/
4 N)
Top-Down Design in Reality P\ 4 Aside: Least-Risk Design P\ 4
Design process should minimize risk
Top-down design in programming in reality Bottom-up design
» Define main() function in pseudocode » Compose each child module
» Refine each pseudocode statement before its parent
* Oops! Details reveal design error, so... Risk level: high
» Backtrack to refine existing (pseudo)code, and proceed * May compose modules
« Repeat in (mostly) breadth-first order until finished that are never used
Top-down design
» Compose each parent module
- - before its children
m * Risk level: low
» Compose only those modules
that are required
35/ 36/

4 N

Aside: Least-Risk Design 3z Example: Text Formatting 3z
Recommendation Functionality (derived from King Section 15.3)
* Work mostly top-down « Input: ASCII text, with arbitrary spaces and newlines
« But give high priority to risky modules » Output: the same text, left and right justified
(that may result in major rewrites) + Fit as many words as possible on each 50-character line
 Create scaffolds and stubs as required » Add even spacing between words to right justify the text
* No need to right justify last line
» Assumptions
+ “Word” is a sequence of non-white-space chars followed by a
white-space char or end-of-file
» No word is longer than 20 chars
)
4 N
Example Input and Output b\, Caveats b\,
“C is quirky, flawed, and an enormous Success.
suroly retped oS o history Caveats concerning the following presentation
Slit evidentiy satisfied a need for a * Function comments and some blank lines are omitted
g— system implementation language efficient enough Because of space constraints
— | to displace assembly language, . Don't do that!!!
yet sufficiently abstract and fluent to describe ontdo that:
algorithms and interactions in a » Design sequence is idealized
wide variety of environments." -- Dennis Ritchie « In reality, typically much backtracking would occur
“C is quirky, flawed, and an enormous success.
+ |While accidents of history surely helped, it
3 |evidently satisfied a need for a system
o implementation language efficient enough to
3 |displace assembly language, yet sufficiently
O abstract and fluent to describe algorithms and
interactions in a wide variety of environments."
-- Dennis Ritchie
»)
4 N
The main() Function B, The main() Function 2z
int main(void) enum {MAX_WORD_LEN = 20}%};
{ <clear line> int main(void)
<read a word> _ { char word[MAX_WORD_LEN+1];
while (<there is a word>) int wordLen;
{ if (<word doesn’t fit on line>) <clear line>
{ <write justified line> wordLen = readWord(word);
<clear line> while (<there is a word>)
{ if (<word doesn’t fit on line>)
<add word to line> { <write justified line>
<read a word> _ <clear line>
}
if (<line isn’t empty>) <add word to line>
<write line> wordLen = readWord(word);
return O; 3}
¥ if (<line isn’t empty>)
<write line>
return O;
}
Y

Vs

The main() Function

Vs

The main() Function

£

Vs

The main() Function

Vs

The main() Function

“J

“J

Vs

The main() Function

Vs

The main() Function

)

Vs

The main() Function

Status

Vs

®J

main

| readWord | | writeLine |

| addWord

1

)

The readWord() Function

Vs

The readWord() Function

Y

Note the use of a function
from the standard library.
Very appropriate for your
top-down design to target
things that are already built.

2)

Vs

The readWord() Function

Vs

The readWord() Function

9.

~N

4 N\ 4
Status % | | The addword() Function
main
readWord | |writeLine | |addWord |
SSJ 56j
4 4

The addWord() Function

The addWord() Function

~

The addWord() Function

~

Status

main

readWord |

|WriteLine |

|addword

1

p
The writeLine() Function

p
The writeLine() Function

)

°)

p
The writeLine() Function

4 N\

The writeLine() Function g!g

The number
of gaps

Example:
If extraSpaces is 10
and wordCount is 5,
then gaps will contain
2,2, 3,and 3 extra
spaces respectively

63) 64)
4 4 N\
The writeLine() Function Status 9
main
|readWord | |writeLine | |addWord |
Complete! And modular!
65) 66)

4 N 7 N
Summary Are we there yet? V

a
%

{

Now that the top-down design is done, and the program

“works,” does that mean we’re done?
Program style

» Choose appropriate names (for variables, functions, ...)
» Use common idioms (but not at the expense of clarity) . .
« Reveal program structure (spacing, indentation, parentheses, ...) No. There are almost always things to improve, perhaps by
. Compose proper comments (especia”y for functions) a bOttom-Up paSS that better uses eX'St'ng |Ib|’al’|eS

» Use modularity (because modularity reveals abstractions)

Programming style
» Use top-down design and successive refinement
= But know that backtracking inevitably will occur
» And give high priority to risky modules

The second time you write the same program, it turns out
better.

7 J

4 N 7
5 . . 3 . .
What’s wrong with this output? V What'’s better with this output?
e is_quirky, _ Flawed, and an _enormous success. “C is quirky, flawed, and an enormous success.
W:"'ﬁ I 3c0|dents of history O |while accidents of history surely helped, it
5 §:rey ?dpeti tisfied d f @© [evidently satisfied a need for a system
a ! evi elzn y satistie ? nee o;f"f‘ - h g- implementation language efficient enough to
< S{Stgﬁ‘ ITD ementat;(l)n I anguage efficient enoug O |displace assembly language, yet sufficiently
0 displace assembly fanguage, N O |abstract and fluent to describe algorithms and
yet sufficiently abstract and fluent to describe < interactions in a wide variety of environments."
algorithms and interactions in a __ Dennis Ritchie)
wide variety of environments.” -- Dennis Ritchie
“C is quirky, flawed, and an enormous success. “C is quirky, flawed, and an enormous success.
+ |While accidents of history surely helped, it While accidents of history surely helped, it
3 |evidently satisfied a need for a system B evidently satisfied a need for a system
o implementation language efficient enough to + | implementation language efficient enough to
8 displace assembly language, yet sufficiently 3 displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and abstract and Tfluent to describe algorithms and
interactions in a wide variety of environments." interactions in a wide variety of environments.™
-- Dennis Ritchie -- Dennis Ritchie
69/ 70/
4 N 7 N

“Programming in the Large” Steps g

Challenge problem !p

Design a function int spacesHere(int i, int k, int n)

Design & Implement
* Program & programming style
» Common data structures and algorithms
* Modularity
« Building techniques & tools

that calculates how many marbles to put into the ith jar, assuming that there are n marbles to
distribute over k jars.

(1) the jars should add up to n, that is,

{s=0; for(i=0;i<k;i++) s+=spacesHere(i,k,n); assert (s==n);}

or in math notation, Z‘k:f, spacesHere(ikn) = n Debug
(2) marbles should be distributed evenly—the "extra" marbles should not bunch up in nearby jars. : Debqumg technlques & tools
Test
HINT: You should be able to write this in one or two lines, without any loops. Testing techniques & tools

One solution uses floating-point division and rounding; do "man round" and pay attention to : .
where that man page says "include <math.h>". Maintain

» Performance improvement techniques & tools

~

Appendix: The “justify” Program

~

Appendix: The “justify” Program

Continued on next slide

Continued on next slide

~

Appendix: The “justify” Program

~

Appendix: The “justify” Program

[0

i)

7

=

(0]

[

[

o

Continued on next slide 3

=}

=

=

c

3
) %)
4 N\

~

Appendix: The “justify” Program

Appendix: The “justify” Program g!g

Continued on next slide

