"Princeton University v

Computer Science 217: Introduction to Programming Systems Eumnb

~

s

Agenda

Building Multi-File Programs
with the make Tool

Motivation for Make
Make Fundamentals
Non-File Targets
Macros

Implicit Rules

Motivation for Make (Part 2) g

Partial Builds

J 2
4 N\ N
Multi-File Programs !p Motivation for Make (Part 1) !p

intmath.h (interface) ) . Building testintmath, approach 1:

#ifndef INTMATH_INCLUDED testintmath.c (C“ent) * Use one gcc217 command to

#defi INTMATH_INCLUDED = wi w ) .

ine goacint 1. THEI>: ancluce _mtnathn preprocess, compile, assemble, and link

int Icm(int i, int j);

#endif int main(void)

intmath.c (implementation) | it :

Intmath.c (Implementati ti ; . e a = =

T P e T T testintmath.c| [intmath.h| [intmath.c

printf("Enter the second integer:\n™);
int ged(int i, int j) scanf("%d”, &j);
{ im_: tem?; printf("'Gr('eatt.ast common divisor: %d.\n",
?h::éﬁp(: :=%0}; prigfzgg‘l'l,.eja;z’cnmmon multiple: %d.\n", gcc217 testintmath.c intmath.c —o testintmath
i=]; fen(i, §);
j = temp; return 0;
¥
return i; K .
Note: intmath.h is f

T . . . =

;ntr;gg;";i- ) ;g;(lg D) #|nclud§d into intmath.c testintmath

: and testintmath.c

2 +

4 N\ N

Building testintmath, approach 2:
» Preprocess, compile, assemble to produce .o files
« Link to produce executable binary file

Recall: -c option
tells gcc217 to omit link

testintmath.c
testintmath.o

gcc2l7 testintmath.o i

testintmath

|intmath.h| |intmath.c|

ge intmath.c

.0 —0 testintmath

S/

Approach 2 allows for partial builds
» Example: Change intmath.c

* Must rebuild intmath.o and testintmath

* Need not rebuild testintmath.o!!!

testintmath.c
testintmath.o

gcc217 tes

intmath.h

iqtmath.o intma

testintmath

c c”intmath.c

.0 —0 testintmath

P

S




s

N
Partial Builds L

s

N
Partial Builds L

» Example: Change testintmath.c
* Must rebuild testintmath.o and testintmath
* Need not rebuild intmath.o!!

If program contains many .c files, could save many hours of build time

gec217 —¢ intmath.c

.0 —0 testintmath

intmath.o intma

testintmath

7

However, changing a .h file can be more dramatic
» Example: Change intmath.h
e intmath.h is #included into testintmath.c and intmath.c
» Changing intmath.h effectively changes testintmath.c
and intmath.c
* Must rebuild testintmath.o, intmath.o, and testintmath

changed

testintmath.o

gcc2l7 tes

|intmath.c|

S c”intmath.c

intmath.o intmaiti.o —o testintmath

testintmath

Y

s

Wouldn’t It Be Nice...

s

Agenda

Observation
» Doing partial builds manually is tedious and error-prone
» Wouldn’ t it be nice if there were a tool

How would the tool work?
* Input:
» Dependency graph (as shown previously)
» Specifies file dependencies
» Specifies commands to build each file from its dependents
» Date/time stamps of files
« Algorithm:
« If file B depends on A and date/time stamp of A is newer than
date/time stamp of B, then rebuild B using the specified
command

That’ s make!

2/

Motivation for Make
Make Fundamentals
Non-File Targets
Macros

Implicit Rules

")

s

Make Command Syntax

s

Dependency Rules in Makefile

Command syntax
$ man make
SYNOPSIS
make [-f makefile] [options] [targets]

= makefile
» Textual representation of dependency graph
» Contains dependency rules
» Default name is makefi le, then Makefile

e target
* What make should build
» Usually: .o file, or an executable binary file
» Default is first one defined in makefile

Dependency rule syntax
target: dependencies
<tab>command

= target: the file you want to build

= dependencies: the files on which the target depends

= command: (after a TAB character) what to execute to
create the target

Dependency rule semantics
» Build target iff it is older than any of its dependencies
» Use command to do the build

Work recursively; examples illustrate...

=)




~

Makefile Version 1

-
Version 1 in Action

Makefile:

217 —¢”intmath.c

0 —o0 testintmath

At first, to build testintmath
make issues all three gcc
commands

Use the touch command to

change the date/time stamp
/ of intmath.c

make does a partial build

make notes that the specified
target is up to date

The default target is testintmath,

the target of the first dependency rule

~

Agenda

-
Non-File Targets

Motivation for Make
Make Fundamentals
Non-File Targets
Macros

Implicit Rules

Adding useful shortcuts for the programmer
= make all: create the final executable binary file
= make clean: delete all .o files, executable binary file
= make clobber: delete all Emacs backup files, all .o files, executable

Commands in the example
< rm —f: remove files without querying the user

« Files ending in ‘~’ and starting/ending in ‘#" are Emacs backup files

~

Makefile Version 2

-
Version 2 in Action

make observes that “clean” target
doesn’ t exist; attempts to build it
by issuing “rm” command

Same idea here, but
“clobber” depends upon “clean]

“all” depends upon
“testintmath”

“all” is the default target|

®)




4 N )
Agenda g!g Macros g!g
make has a macro facility
L  Performs textual substitution
Motivation for Make  Similar to C preprocessor’s #define
Make Fundamentals Macro definition syntax
Non-File Targets macroname = macrodefinition
= make replaces $(macroname) with macrodefinition in remainder of
Macros Makefile
Implicit Rules Example: Make it easy to change build commands
CC = gcc217
Example: Make it easy to change build flags
CFLAGS = -D NDEBUG -0
19) 20)
4 4 )
Makefile Version 3 Version 3 in Action a!g
Same as Version 2
21) 22)
4 N )
Agenda g!g Implicit Rules a!g

Motivation for Make
Make Fundamentals
Non-File Targets
Macros

Implicit Rules

2)

make has implicit rules for compiling and linking C programs
= make knows how to build x.o from x.c
 Automatically uses $(CC) and $(CFLAGS)
= make knows how to build an executable from .o files
+ Automatically uses $(CC)

v




~

Makefile Version 4

-
Version 4 in Action

%)

Same as Version 2

)

~

Implicit Dependencies

-
Makefile Version 5

make has implicit rules for inferring dependencies
= make will assume that x.0 depends upon x.c

. S

7

%)

~

Version 5 in Action

Same as Version 2

2)

I> jClicker Question

Q: If you were making a MakeTi I e for this program,
what should a. o depend on?

A.a.c

B.a.c a.h

C.a.c c.h d.h
D.a.c a-h c.h d.h



4 N
Makefile Guidelines ®: | >iClicker Question
Q: If you were making a Makefi le for this program,
what should a depend on?
A.a.o b.o
a.o: a.h ¢.h d.h B.a.o b.o a.c b.c
C.a.o b.o a.h c.h d.h
In a proper Makeflle, each object file: o SR e S
» Depends upon its .c file (but can rely on an implicit dependency)
+ Does not depend upon any other .c file E.a.o b.o a.c b.c a.h c.h d.h
» Does not depend upon any .o file
» Depends upon any .h files that are #included directly or indirectly
)
4 N N
Makefile Guidelines 2z Making Makefiles 2z
In this course
» Create Makefiles manually
Beyond this course
» Can use tools to generate Makefiles
» See mkmf, others
a: a.o b.o
In a proper Makefile, each executable:
» Depends upon the .o files that comprise it
» Does not depend upon any .c files
» Does not depend upon any .h files 5 ) S,
4 N N
Makefile Gotchas 2z Make Resources 2z
Beware:
» Each command (i.e., second line of each dependency rule) must C Programming: A Modern Approach (King) Section 15.4
begin with a tab character, not spaces GNU make
. . * http://www.gnu.org/software/make/manual/make.html
» Use the rm —F command with caution
» To use an implicit rule to make an executable,
the executable must have the same name as one of the .o files
Correct: [myprog: myprog.o someotherfile.o ] \/
Won't work: [myprog: somefile.o someotherfile.o|
35/ 36/




s

Summary

"Princeton University

Computer Science 217: Introduction to Programming Systems

~

Motivation for Make
« Automation of partial builds

Make fundamentals (Makefile version 1)
» Dependency rules, targets, dependencies, commands

Non-file targets (Makefile version 2)
Macros (Makefile version 3)

Implicit rules (Makefile versions 4 and 5)

7

Debugging (Part 1)

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

»)

s

Goals of this Lecture

s

Testing vs. Debugging

Help you learn about:
« Strategies and tools for debugging your code

Why?
» Debugging large programs can be difficult
» A power programmer knows a wide variety of debugging strategies
» A power programmer knows about tools that facilitate debugging
» Debuggers
» Version control systems

Testing
» What should | do to try to break my program?

Debugging
» What should | do to try to fix my program?

39/ 40/
4 N )
Agenda !p Understand Error Messages !p

(1) Understand error messages
2) Think before writing
3) Look for familiar bugs

4) Divide and conquer

Display output

(

(

(

(5) Add more internal tests
(

(7) Use a debugger

(

)
)
)
6)
)
)

8) Focus on recent changes

Y

Debugging at build-time is easier than debugging at run-
time, if and only if you...

Understand the error messages!

#include <stdioo.h>

/* Print "hello, world"” to stdout and
return O.

int main(void)

{ printfC'hello, world\n");
return O;

¥

What are the
errors? (No
fair looking at
the next slide!)

2




Ve

Understand Error Messages

~

Understand Error Messages

~

Understand Error Messages

~

Understand Error Messages

~

Understand Error Messages

~

Understand Error Messages




4 N )
Understand Error Messages 3z Understand Error Messages 3z
Caveats concerning error messages
T T Ty, * Line # in error message may be approxmate
#include <stdlib.h> » Error message may seem nonsensical
enum StateType » Compiler may not report the real error
{ STATE_REGULAR, What does P Yy p
. SIIE_LINIRD this error Tips for eliminating error messages
S ) 2:2?39‘3 S « Clarity facilitates debugging
{ printf(just hanging around\n™); ’ » Make sure code is indented properly
} e BN EeEaEsE « Look for missing semicolons
+ At ends of structure type definitions
$ gcc217 hello.c -o hello ¥ + At ends of function declarations
hello.c:7: error: two or more data types in declaration specifiers * Work incrementally
hello.c:7: warning: return type of "main® is not "int" - Start at first error message
* Fix, rebuild, repeat
) 50 )
4 N )
Agenda b\, Think Before Writing b\,
(1) Understand error messages Inappropriate changes could make matters worse, so...
(2) Think before writing ) .
N Think before changing your code
(3) Look for familiar bugs « Explain the code to:
(4) Divide and conquer * Yourself
» Someone else
(5) Add more internal tests + A Teddy bear / plushie stuffed tiger?
) » Do experiments
(6) Display output « But make sure they're disciplined
(7) Use a debugger
(8) Focus on recent changes
51/ 52/
4 N )
Agenda b\, Look for Common Bugs b\,
(1) Understand error messages Some of our favorites:
(2) Think before writing ne i
switch (i) FC%d, 1);
(3) Look for common bugs { case 0: Sl D
.. char c;
(4) Divide and conquer break;
case 1: c = getchar();
(5) Add more internal tests S
case 2:
. hil = ‘tch 1= EOF
(6) Display output } . 'me & = RS )
(7) Use a debugger it G =5
(8) Focus on recent changes :lr\‘lhat are
= = = = = e
if (5 < i < 10) if (l & j) errors?
53/ 54/




4 )

Look for Common Bugs

ot

-
Look for Common Bugs

ot

Some of our favorites:

Some of our favorites:

)

{ inti

for (i = 0; i < 10; i++)
{ for 4 = 0; j < 10; i++) i =5; What value is

... if (something) written if this
} ¥ € OmiE 05 statement is

What are i =l6: present? Absent?

for (i = 0; i < 10; i++) the
{ for (i = 105 j >= 05 j++) errors? b

§ Brintf("%d\n", i);
} e

¥
J
4 N
Agenda g Divide and Conquer g

(1) Understand error messages
(2) Think before writing

(3) Look for common bugs

(4) Divide and conquer

(5) Add more internal tests

(6) Display output

(7) Use a debugger

(8)

8) Focus on recent changes

Divide and conquer: To debug a program...

« Incrementally find smallest input file that illustrates the bug

* Approach 1: Remove input
+ Start with file
* Incrementally remove lines
until bug disappears

%‘g‘@

* Examine most-recently-removed lines

* Approach 2: Add input
« Start with small subset of file

—mlm[ ]

* Incrementally add lines
until bug appears
» Examine most-recently-added lines

57/ 58/
4 N 7 N
Divide and Conquer g Agenda g
Divide and conquer: To debug a module... (1) Understand error messages
 Incrementally find smallest client code subset that illustrates the (2) Think before writing
bug (3) Look for common bugs
+ Approach 1: Remove code (4) Divide and conquer
: itsrréxg:tﬁls; rcéﬁr;tve lines of code until bug disappears (5) Add more internal tests
» Examine most-recently-removed lines (6) Display output
« Approach 2: Add code (7) Use a debugger
: it:rr::r\:g:t:"l;::ﬂ Ici::eeztof test client until bug appears (8) Focus on recent changes
» Examine most-recently-added lines
59/ 60/




4 N 7 N
Add More Internal Tests 1‘. Agenda 1‘.
(1) Understand error messages
(5) Add more internal tests (2) Think before writing
« Internal tests help find bugs (see “Testing” lecture) (3) Look for common bugs
(4) Divide and conquer
« Internal test also can help eliminate bugs .
« Validating parameters & checking invariants (5) Add more internal tests
can eliminate some functions from the bug hunt .
(6) Display output
(7) Use a debugger
(8) Focus on recent changes
61/ 62/
4 N 7 N
Display Output ﬁvg Display Output ﬁvg
Write values of important variables at critical spots - .
Write debugging
output to stderr;
. ) debugging output
« Poor: stdout is buffered: M|aybe even better: can be separated
= S— = - fprintf(stderr, "%d", keyvariable); from normal output
printf("%d", keyvariable); program may crash p
| I‘/ before output appears via redirection
* Maybe better: Printing "\n" flushes * Maybe better still Ss;ﬂfsr:er:;derr N
[printf(sd\n”, keyvariable); J«— — :]h; ;gi%‘gt tb‘gfer' but FILE *fp = fopen("logfile”, “w);
redirected 1o a file fprintf(fp, "%d", keyvariable); ‘ﬁ Write to a log file
* Better: Frlush(fp);
Call FFlush() to flush
printf("'%d”, keyvariable); stdout buffer
fflush(stdout); | explicitly
63/ 54/
” AR v
Agenda Use a Debugger

1) Understand error messages

(

(2) Think before writing

(3) Look for common bugs
(4) Divide and conquer

(5) Add more internal tests
(6) Display output

(7) Use a debugger

(8) Focus on recent changes

“)

Use a debugger

* Alternative to displaying output

“)




4 N N
The GDB Debugger b\, Agenda b\,
(1) Understand error messages
GNU Debugger (2) Think before writing
« Part of the GNU development environment 3 Look f b
« Integrated with Emacs editor (3) Look for common bugs
* Allows user to: (4) Divide and conquer
* Run program
+ Set breakpoints (5) Add more internal tests
+ Step through code one line at a time .
» Examine values of variables during run (6) Display output
. Etc. (7) Use a debugger
. . (8) Focus on recent changes
For details see precept tutorial, precept reference sheet,
Appendix 1
67/ 68/
4 N N
Focus on Recent Changes P\, e Focus on Recent Changes P\, e
Focus on recent changes Focus on recent change (cont.)
« Corollary: Debug now, not later « Corollary: Maintain old versions
Difficult: Easier: Difficult: Easier:
(1) Compose entire program (1) Compose a little (1) Change code (1) Backup current version
(2) Test entire program (2) Test a little (2) Note new bug (2) Change code
(3) Debug entire program (3) Debug a little (3) Try to remember what (3) Note new bug
(4) Compose a little changed since last (4) Compare code with
(5) Test a little version last version to
(6) Debug a little determine what changed
69/ 70/
4 N N
Maintaining Old Versions b\, Maintaining Old Versions b\,

To maintain old versions...

Approach 1: Manually copy project directory

$ mkdir myproject
$ cd myproject

Create project files here.
cd ..

cp —r myproject myprojectDateTime
cd myproject

©» ¢ e

Continue creating project files here.

")

Approach 2: Use a Revision Control System such as
subversion or git
» Allows programmer to:
» Check-in source code files from working copy to repository
» Commit revisions from working copy to repository
 saves all old versions
» Update source code files from repository to working copy
» Can retrieve old versions
» Appropriate for one-developer projects
» Extremely useful, almost necessary for multideveloper projects!

Not required for COS 217, but good to know!

Google “subversion svn” or “git” for more information.

2




4 N N
Summary P\, e Appendix 1: Using GDB b\,
An example program Euclid’ s algorithm;
: . ' i : Don’ t be concerned
General debugging strategies and tools: File testintmath.c: . .
1) Understand with details
(1) n. erstan errc.)r. messages Zinclude <stdio T ]
(2) Think before writing - ) _
(3) Look for common bugs int ged(int i, int j) int main(void)
- { int temp; int iGed;
(4) Divide and conquer while (i’!= 0 int iLcm;
(5) Add more internal tests { temp =i % j; :Egg = ?gggg- ig
(6) Display output J' - Jtémp_ printfC%d %d\n', iGed, ilem);
(7) Use a debugger ’ return 0;
+ Use GDB!!! return i; +
(8) Focus on recent changes > )
. ; . The program is correct
» Consider using git, etc. int Icm(int i, int j)
i / gedGi, §)) * i . .
§ return (i / ged(i. 33 * J But let’ s pretend it has a
runtime error in ged()...
73/ 74/
4 N N
Appendix 1: Using GDB 2z Appendix 1: Using GDB 2z
Typical steps for using GDB:
General GDB strategy:
(a) Build with —g
gcc2l7 —g testintmath.c —o testintmath
 Execute the program to the point of interest » Adds extra information to executable file that GDB uses
+ Use breakpoints and stepping to do that (b) Run Emacs, with no arguments
emacs
« Examine the values of variables at that point (c) Run GDB on executable file from within Emacs
<Esc key> x gdb <Enter key> testintmath <Enter key>
(d) Set breakpoints, as desired
break main
+ GDB sets a breakpoint at the first executable line of main()
break gcd
« GDB sets a breakpoint at the first executable line of gcd()
75/ 76/
4 N N
Appendix 1: Using GDB Appendix 1: Using GDB P\
Typical steps for using GDB (cont.): Typical steps for using GDB (cont.):
(e) Run the program
run . . .
« GDB stops at the breakpoint in main() () Exam_lni v_arlables, as desired
« Emacs opens window showing source code pr! n '
« Emacs highlights line that is to be executed next pr!nt ]
continue print ‘temp
- GDB stops at the breakpoint in ged() . QDB prints th.e value of each varlfable
« Emacs highlights line that is to be executed next (h) Examine the function call stack, if desired
(f) Step through the program, as desired where
step (repeatedly) « GBB prints the function call stack
+ GDB executes the next line (repeatedly) « Useful for diagnosing crash in large program
* Note: When next line is a call of one of your functions: (i) Exit gd:
= step command steps into the function . . qut
= next command steps over the function, that is, executes the next line (j) Exit Emacs
without stepping into the function <Ctrl-x key> <Ctrl-c key>
77/ 78/




s

Appendix 1: Using GDB

GDB can do much more:

Handle command-line arguments
run argl arg2
Handle redirection of stdin, stdout, stderr
run < somefile > someotherfile
Print values of expressions
Break conditionally
Etc.

»)




