
1

Testing

Princeton University
Computer Science 217: Introduction to Programming Systems

“On two occasions I have been asked

[by members of Parliament!],

‘Pray, Mr. Babbage, if you put

into the machine wrong figures,

will the right answers come out?

I am not able rightly to apprehend

the kind of confusion of ideas that

could provoke such a question.”
‒ Charles Babbage

2

Why Test?

It's hard to know if a (large) program works properly

Ideally: Automatically prove that a program is

correct (or demonstrate why it’s not)

General

Program

Checkerprogram.c

Right or Wrong
Specification

That’s

impossible

Alan M. Turing *38

“Beware of bugs in the above code;

I have only proved it correct, not tried it.”
‒ Donald Knuth

3

Why Test?

Ideally: Semiautomatically prove that a program is

correct

This is possible, but

• beyond most current engineering practice

• beyond the scope of this course
Take COS 326, then COS 510 or COS 516 if you’re interested!

Proof

Assistantprogram.c
Verification

of correctness

Specification

user interaction

4

Why Test?

Pragmatically: Convince yourself that your

program probably works

Result: software engineers spend at least as much time

building test code as writing the program
• You want to spend that time efficiently!

Possibly Right
(no bugs found)

or

Certainly Wrong
(bugs found)

Testing

Strategy
program.c

Specification

5

Who Does the Testing?

Programmers
• White-box testing

• Pro: Know the code ⇒ can test all statements/paths/boundaries

• Con: Know the code ⇒ biased by code design

Quality Assurance (QA) engineers
• Black-box testing

• Pro: Do not know the code ⇒ unbiased by code design

• Con: Do not know the code ⇒ unlikely to test all

statements/paths/boundaries

Customers
• Field testing

• Pros: Use code in unexpected ways; “debug” specs

• Cons: Often don’t like “participating”; difficult to generate enough

cases

EXTERNAL TESTING

Example: “upper1” Program

7

/* Read text from stdin. Convert the first character of each

"word" to uppercase, where a word is a sequence of

letters. Write the result to stdout. Return 0. */

int main(void)

{

. . .

}

How do we test this program?

Run it on some sample inputs?

$./upper1

heLLo there...

^D

HeLLo There...

$

OK to do it once; tedious

to repeat every time the

program changes

Organizing Your Tests

8

/* Read text from stdin. Convert the first character of each

"word" to uppercase, where a word is a sequence of

letters. Write the result to stdout. Return 0. */

$ cat inputs/001

heLLo there...

$ cat correct/001

HeLLo There...

$ cat inputs/002

84weird e. xample

$ cat correct/002

84Weird E. Xample

Running Your Tests

9

/* Read text from stdin. Convert the first character of each

"word" to uppercase, where a word is a sequence of

letters. Write the result to stdout. Return 0. */

$ cat run-tests

./upper1 < inputs/001 > outputs/001

cmp outputs/001 correct/001

./upper1 < inputs/002 > outputs/002

cmp outputs/002 correct/002

$ sh run-tests

outputs/002 correct/002 differ: byte 5, line 1

this is a

“shell script”

or “bash script”

Shell Scripting

10

/* Read text from stdin. Convert the first character of each

"word" to uppercase, where a word is a sequence of

letters. Write the result to stdout. Return 0. */

$ cat run-tests

for A in inputs/* ; do

./upper1 <inputs/$A >outputs/$A

cmp outputs/$A correct/$A

done

$ sh run-tests

outputs/002 correct/002 differ: byte 5, line 1

this is a

“shell script”

or “bash script”

You can also write these scripts in python instead of bash.

If you know some python already, this is probably a better

idea than learning bash.

Regression Testing

11

re·gres·sion
rəˈɡreSH(ə)n/
noun

1. a return to a former or less developed state.

2. . . .

for (;;) {

test program; discover bug;

fix bug, in the process break something else;

}

re·gres·sion test·ing
Rerun your entire test suite after each change to the program.

When new bugs are found, add tests to the test suite that

check for those kinds of bugs.

12

Bug-Driven Testing

Reactive mode…
• Find a bug ⇒ create a test case that catches it

Proactive mode…
• Do fault injection

• Intentionally (temporarily!) inject a bug

• Make sure testing mechanism catches it

• Test the testing!!!

13

Is This the Best Way?

Limitations of whole-program testing:

• Requires program to have one right answer

• Requires knowing that one right answer

• Requires having enough tests

• Requires rewriting the tests when specifications change

14

Is This the Best Way?

Modularity!

• One of the main lessons of COS 217:

Writing large, nontrivial programs is best done by

composing simpler, understandable components

• Testing large, nontrivial programs is best done by

testing simpler, understandable components

15

Who Does the Testing?

Programmers
• White-box testing

• Pro: Know the code ⇒ can test all statements/paths/boundaries

• Con: Know the code ⇒ biased by code design

Quality Assurance (QA) engineers
• Black-box testing

• Pro: Do not know the code ⇒ unbiased by code design

• Con: Do not know the code ⇒ unlikely to test all

statements/paths/boundaries

Customers
• Field testing

• Pros: Use code in unexpected ways; “debug” specs

• Cons: Often don’t like “participating”; difficult to generate enough

cases

Exploiting structure of

code makes this strategy

more efficient

INTERNAL TESTING

WITH ASSERTIONS

17

The assert Macro

#include <assert.h>

assert(expr)

• If expr evaluates to TRUE (non-zero):

• Do nothing

• If expr evaluates to FALSE (zero):

• Print message to stderr “assert at line x failed”

• Exit the process

18

1. Validating Parameters

At beginning of function, make sure parameters are valid

/* Return the greatest common

divisor of positive integers

i and j. */

int gcd(int i, int j)

{

assert(i > 0);

assert(j > 0);

...

}

19

2. Validating Return Value

At end of function, make sure return value is plausible

/* Return the greatest common

divisor of positive integers

i and j. */

int gcd(int i, int j)

{

...

assert(value > 0);

assert(value <= i);

assert(value <= j);

return value;

}

At function entry, check aspects of data structures that

shouldn't vary; maybe at function exit too

20

3. Checking Invariants

int isValid(MyType object)

{ …

/* Code to check invariants goes here.

Return 1 (TRUE) if object passes

all tests, and 0 (FALSE) otherwise. */

…

}

void myFunction(MyType object)

{ assert(isValid(object));

…

/* Code to manipulate object goes here. */

…

assert(isValid(object));

}

21

4. Checking Array Subscripts

Out-of-bounds array subscript causes vast numbers of

security vulnerabilities in C programs!

#include <stdio.h>

#include <assert.h>

#define N 1000

#define M 1000000

int a[N];

int main(void) {

int i,j, sum=0;

for (j=0; j<M; j++)

for (i=0; i<N; i++) {

assert (0 <= i && i < N);

sum += a[i];

}

printf ("%d\n", sum);

}

5. Checking Function Values

Check values returned by called functions (not with assert!)

Example:

• scanf() returns number of values read

• Caller should check return value

int i, j;

…

if (scanf("%d%d", &i, &j) != 2)

/* Handle the error */

int i, j;

…

scanf("%d%d", &i, &j);
Bad code

Good code

UNIT TESTING

Testing Modular Programs

Any nontrivial program built up out of modules, or units.

Example:

Homework 2.

Homework 2

str.h (excerpt)

/* Return the length of src */

size_t Str_getLength(const char *src);

/* Copy src to dest. Return dest.*/

char *Str_copy(char *dest, const char *src);

/* Concatenate src to the end of dest. Return dest. */

char *Str_concat(char *dest, const char *src);

stra.c (excerpt)

#include "str.h"

size_t Str_getLength(const char *src){

... you write this code ...

}

char *Str_copy(char *dest, const char *src) {

... you write this code ...

}

char *Str_concat(char *dest, const char *src) {

... you write this code ...

}

replace.c (excerpt)

#include "str.h"

/* Write line to stdout with each occurrence

of from replaced with to. */

size_t replaceAndWrite(

char *line, char *from, char *to) {

... you write this code ...

calls Str_getLength, Str_copy,

Str_concat, etc.

}

int main(int argc, char **argv) {...}

26

Unit Testing Harness

Function 2

Function 3 Function 4

Function 1

Scaffold: Temporary

code that calls code

that you care about

(Optional) Stub:

Temporary code

that is called by

code that you

care about

Code that

you care about

Write a new program that combines

one module with additional code

that tests it

teststr.c

/* Test the Str_getLength() function. */

static void testGetLength(void) {

size_t result;

printf(" Boundary Tests\n");

{ char src[] = {'\0', 's'};

result1 = Str_getLength(acSrc);

assert(result == 0);

}

printf(" Statement Tests\n");

{ char src[] = {'R', 'u', 't', 'h', '\0', '\0'};

result = Str_getLength(src);

assert(result == 4);

}

{ char src[] = {'R', 'u', 't', 'h', '\0', 's'};

result = Str_getLength(src);

assert(result == 4);

}

{ char src[] = {'G', 'e', 'h', 'r', 'i', 'g', '\0', 's'};

result = Str_getLength(src);

assert(result == 6);

}}

28

Stress Testing

Should stress the program or module with respect to:
• Quantity of data

• Large data sets

• Variety of data

• Textual data sets containing non-ASCII chars

• Binary data sets

• Randomly generated data sets

Consider using computer to generate test data
• Avoids human biases

Is this cheating?

Maybe, maybe not.

Stress Testing

enum {STRESS_TEST_COUNT = 10};

enum {STRESS_STRING_SIZE = 10000};

static void testGetLength(void) {

. . .

printf(" Stress Tests\n");

{int i;

char src[STRESS_STRING_SIZE];

for (i = 0; i < STRESS_TEST_COUNT; i++) {

randomString(src, STRESS_STRING_SIZE);

result = Str_getLength(acSrc);

assert(result == strlen(acSrc));

}

}

}

When you don’t have a reference

implementation to give you “the answer”

printf(" Stress Tests\n");

{int i,j;

char src[STRESS_STRING_SIZE];

for (i = 0; i < STRESS_TEST_COUNT; i++) {

randomString(src, STRESS_STRING_SIZE);

result = Str_getLength(acSrc);

assert(0 <= result);

assert(result < STRESS_STRING_SIZE);

for (j = 0; j < result; j++)

assert(src[j] != '\0');

assert(src[result] == '\0');

}

}

}

Think of as many properties as you can

that the right answer must satisfy.

You can . . .

. . . combine unit testing and regression testing!

. . . write your unit tests (teststr.c) before you write your client

code (replace.c)

. . . write your unit tests (teststr.c) before you begin writing

the code that they will test (stra.c)

. . . use your unit-test design as a way to refine your interface

specifications (i.e., what’s described in comments in the

header file) another reason to write the unit tests before writing the code!

. . . avoid relying on the COS 217 instructors to provide you

all the unit tests in advance. (We have more unit tests in our grading

system than we give you in the homework assignments. It’s your job to test your

own code!)

TEST COVERAGE

33

Statement Testing

(1) Statement testing

• “Testing to satisfy the criterion that each statement in a program be

executed at least once during program testing.”

From the Glossary of Computerized System and Software Development Terminology

34

Statement Testing Example

Example pseudocode:

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

Statement testing:

Should make sure both if

statements and all 4 nested

statements are executed

iClicker Question

Q: How many passes of testing are required to get full

statement coverage?

A. 1

B. 2

C. 3

D. 4

E. 5

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

How can you measure code coverage?

Use a tool!

Q: Are we allowed to use

code coverage tools in the

homeworks?

A: Yes, but if you do,

• You’re on your own,

don’t ask the preceptors

or Lab TAs for help with

the tool

• Describe in your

README how you used

the tool.

37

Path Testing

(2) Path testing

• “Testing to satisfy coverage criteria that each logical path through

the program be tested. Often paths through the program are

grouped into a finite set of classes. One path from each class is then

tested.”

From the Glossary of Computerized System and Software Development Terminology

38

Path Testing Example

Example pseudocode:

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

Path testing:

Should make sure all logical

paths are executed

iClicker Question

Q: How many passes of testing are required to get full

path coverage?

A. 1

B. 2

C. 3

D. 4

E. 5

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

40

Path Testing Example

Example pseudocode:

• Simple programs ⇒ maybe reasonable

• Complex program ⇒ combinatorial explosion!!!

• Path test code fragments

Some code coverage tools can also assess path coverage.

if (condition1)

statement1;

else

statement2;

…

if (condition2)

statement3;

else

statement4;

…

Path testing:

Should make sure all logical

paths are executed

41

Boundary Testing

(3) Boundary testing (or corner case testing)

• “A testing technique using input values at, just below, and just

above, the defined limits of an input domain; and with input values

causing outputs to be at, just below, and just above, the defined

limits of an output domain.”

From the Glossary of Computerized System and Software Development Terminology

42

Boundary Testing Example

How would you boundary-test this function?

/* Where a[] is an array of length n,

return the first index i such that a[i]==x,

or -1 if not found */

int find(int a[], int n, int x);

int a[10];

for (i=0;i<10;i++) a[i]=1000+i;

assert (find(a,10,1000)==0);

assert (find(a,10,1009)==9);

assert (find(a,9,1009)== -1);

assert (find(a+1,8,1000)== -1);

POST-TESTING

44

Leave Testing Code Intact!

Examples of testing code:
• unit test harnesses (entire module, teststr.c)

• assert statements

• entire functions that exist only to support asserts
(isValid() function)

Do not remove testing code when program is finished
• In the “real world” no program ever is “finished”

If you suspect that the testing code is inefficient:
• Test whether the time impact is significant

• Leave assert() but disable at compile time

• Disable other code with #ifdef…#endif preprocessor directives

45

Efficiency of Testing Code

Doesn’t that slow it down?

How much slower does the

assertion make the program?

$ gcc217 –O2 test.c

$ time a.out

0.385 seconds ± .02

$ gcc217 –O2 test_without_assert.c

$ time a.out

0.385 seconds ± .02

Why?

#include <stdio.h>

#include <assert.h>

#define N 1000

#define M 1000000

int a[N];

int main(void) {

int i,j, sum=0;

for (j=0; j<M; j++)

for (i=0; i<N; i++) {

assert (0 <= i && i < N);

sum += a[i];

}

printf ("%d\n", sum);

}

` There's a

better way –

stay tuned!

46

The assert Macro

If testing code is affecting efficiency, it is possible to
disable assert() calls without removing them

• Define NDEBUG in code…

• … or when compiling:

/*------------------------------------*/

/* myprogram.c */

/*------------------------------------*/

#include <assert.h>

#define NDEBUG

…

/* Asserts are disabled here. */

…

$ gcc217 –D NDEBUG myprogram.c –o myprogram

47

#ifdef

Using #ifdef…#endif

• To enable testing code:

• To disable testing code:

…

#ifdef TEST_FEATURE_X

/* Code to test feature

X goes here. */

#endif

…

$ gcc217 –D TEST_FEATURE_X myprog.c –o myprog

myprog.c

$ gcc217 myprog.c –o myprog

48

#ifndef

Or just piggyback on NDEBUG

• To enable testing code:

• To disable testing code:

…

#ifndef NDEBUG

/* Code to test feature

X goes here. */

#endif

…

$ gcc217 myprog.c –o myprog

myprog.c

$ gcc217 –D NDEBUG myprog.c –o myprog

49

Summary

Testing is expensive but necessary – be efficient

• External testing with scripts
• Internal testing with asserts
• Unit testing with harnesses
• Checking for code coverage

Test the code—and the tests!

Leave testing code intact

