
1

The Design of C

Princeton University
Computer Science 217: Introduction to Programming Systems

“C is quirky, flawed, and an enormous

success. While accidents of history surely

helped, it evidently satisfied a need for a

system implementation language efficient

enough to displace assembly language,

yet sufficiently abstract and fluent to

describe algorithms and interactions in a

wide variety of environments.”

-- Dennis Ritchie

Goals of this Lecture

Help you learn about:
• The decisions that were made by the designers* of C

• Why they made those decisions

… and thereby…

• The fundamentals of C

Why?
• Learning the design rationale of the C language provides a richer

understanding of C itself

• A power programmer knows both the programming language and its

design rationale

* Dennis Ritchie & members of standardization committees

2

Goals of C

3

Designers wanted

C to:

But also:

Support system

programming

Support application

programming

Be low-level Be portable

Be easy for people to

handle

Be easy for computers

to handle

• Conflicting goals on multiple dimensions!

• Result: different design decisions than Java

4

Operators

Issue: What kinds of operators should C have?

Thought process
• Should handle typical operations

• Should handle bit-level programming ("bit twiddling")

• Should provide a mechanism for converting from one type to

another

5

Operators

Decisions
• Provide typical arithmetic operators: + - * / %

• Provide typical relational operators: == != < <= > >=

• Each evaluates to 0  FALSE, 1  TRUE

• Provide typical logical operators: ! && ||

• Each interprets 0  FALSE, non-0  TRUE

• Each evaluates to 0  FALSE, 1  TRUE

• Provide bitwise operators: ~ & | ^ >> <<

• Provide a cast operator: (type)

Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)
• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Implication:
• Use logical AND to control flow of logic

• Use bitwise AND only when doing bit-level manipulation

• Same for OR and NOT 6

Decimal Binary

2 00000000 00000000 00000000 00000010

&& 1 00000000 00000000 00000000 00000001

---- -----------------------------------

1 00000000 00000000 00000000 00000001

Decimal Binary

2 00000000 00000000 00000000 00000010

& 1 00000000 00000000 00000000 00000001

---- -----------------------------------

0 00000000 00000000 00000000 00000000

7

Assignment Operator

Issue: What about assignment?

Thought process
• Must have a way to assign a value to a variable

• Many high-level languages provide an assignment statement

• Would be more expressive to define an assignment operator

• Performs assignment, and then evaluates to the assigned value

• Allows assignment to appear within larger expressions

Decisions
• Provide assignment operator: =

• Define assignment operator so it changes the value of a variable,

and also evaluates to that value

8

Assignment Operator Examples

Examples

i = 0;

/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */

/* Side effect: assign 0 to i.

Evaluate to 0.

Side effect: assign 0 to j.

Evaluate to 0. */

while ((i = getchar()) != EOF) …

/* Read a character.

Side effect: assign that character to i.

Evaluate to that character.

Compare that character to EOF.

Evaluate to 0 (FALSE) or 1 (TRUE). */

9

Special-Purpose Assignment

Issue: Should C provide tailored assignment operators?

Thought process
• The construct a = b + c is flexible

• The construct i = i + c is somewhat common

• The construct i = i + 1 is very common

• Special-purpose operators make code more expressive

• Might reduce some errors

• May complicate the language and compiler

Decisions
• Introduce += operator to do things like i += c

• Extend to -= *= /= ~= &= |= ^= <<= >>=

• Special-case increment and decrement: i++ i--

• Provide both pre- and post-inc/dec: x = ++i; y = i++;

iClicker Question

Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

i = 5;

j = i++;

j += ++i;

11

sizeof Operator

Issue: How to determine the sizes of data?

Thought process
• The sizes of most primitive types are un- or under-specified

• Provide a way to find size of a given variable programmatically

Decisions
• Provide a sizeof operator

• Applied at compile-time

• Operand can be a data type

• Operand can be an expression,
from which the compiler infers a data type

Examples, on courselab using gcc217
• sizeof(int) evaluates to 4

• sizeof(i) evaluates to 4 (where i is a variable of type int)

iClicker Question

Q: What is the value of the following sizeof expression

on the courselab machines?

A. 3

B. 4

C. 8

D. 12

E. error

int i = 1;

sizeof(i + 2L)

13

Other Operators

Issue: What other operators should C have?

Decisions
• Function call operator

• Should mimic the familiar mathematical notation

• function(param1, param2, …)

• Conditional operator: ?:

• The only ternary operator: “inline if statement”

• Example: (i < j) ? i : j evaluates to min of i and j

• See King book for details

• Sequence operator: ,

• See King book

• Pointer-related operators: & *

• Described later in the course

• Structure-related operators (. ->)

• Described later in the course

Operators Summary: C vs. Java

Java only
• >>> right shift with zero fill

• new create an object

• instanceof is left operand an object of class right operand?

C only
• -> structure member select

• * dereference

• & address of

• , sequence

• sizeof compile-time size of

14

History of programming languages:

goto, if-then-else, while-do
What the computer does:

/* add up the first n numbers */

1. s = 0;

2. i = 1;

3. if (i>n) goto 7

4. s = s + i;

5. i = i + 1;

6. goto 3

7. /* answer in s */

Early programming

languages (1950s)

s=0;

i=1;

LOOP: if i>n goto DONE

s=s+1;

i=i+1;

goto LOOP;

DONE:

16

Control Statements

 Algol-60 language (1960)
 if-then-else, while-do, for loop, goto

 Scientific background
 Boehm and Jacopini proved (1966) that

any algorithm can be expressed as the

nesting of only 3 control structures:

Barry Boehm

statement1

statement2 statement1

condition

statement2

TRUE FALSE

statement

condition
TRUE

FALSE

Sequence Selection Repetition

17

Control Statements (cont.)

 Thought Process (cont.)
 Dijkstra argued that any algorithm should be

expressed using only those control structures

(GOTO Statement Considered Harmful paper,

1968)

 C language design (1972)
 Basically follow ALGOL-60,

but use { braces } instead of the

more heavyweight BEGIN – END syntax.

Edsgar Dijkstra

Sequence Statement

Compound statement, alias block

18

{

statement1;

statement2;

…

}

statement1

statement2

Sequence

Selection Statements

19

if (expr)

statement1;

if (expr)

statement1;

else

statement2;

statement1

condition

statement2

TRUE FALSE

Selection

Selection Statements

switch and break statements, for multi-path decisions on a

single integerExpr

20

switch (integerExpr)

{ case integerLiteral1:

…

break;

case integerLiteral2:

…

break;

…

default:

…

}

What happens

if you forget
break?

Repetition Statements

while statement; test at leading edge

for statement; test at leading edge, increment at trailing edge

do…while statement; test at trailing edge

21

while (expr)

statement;

for (initExpr; testExpr; incrExpr)

bodyStatement;

do

statement;

while (expr);

expr

statement

test

body

incr

init

expr

statement

Other Control Statements

Issue: What other control statements should C provide?

Decisions
• break statement (revisited)

• Breaks out of closest enclosing switch or repetition statement

• continue statement

• Skips remainder of current loop iteration

• Continues with next loop iteration

• When used within for, still executes incrementExpr

• goto statement grudgingly provided

• Jump to specified label

22

Declaring Variables

Issue: Should C require variable declarations?

Thought process:
• Declaring variables allows compiler to check spelling

• Declaring variables allows compiler to allocate memory

more efficiently

23

Declaring Variables

Decisions:
• Require variable declarations

• Provide declaration statement

• Programmer specifies type of variable (and other attributes too)

Examples
• int i;

• int i, j;

• int i = 5;

• const int i = 5; /* value of i cannot change */

• static int i; /* covered later in course */

• extern int i; /* covered later in course */

24

Declaring Variables

Decisions (cont.):
• Unlike Java, declaration statements must appear before

any other kind of statement in compound statement

25

{

int i;

/* Non-declaration

stmts that use i. */

…

int j;

/* Non-declaration

stmts that use j. */

…

}

{

int i;

int j;

…

/* Non-declaration

stmts that use i. */

…

/* Non-declaration

stmts that use j. */

…

}

Illegal in C Legal in C

Repetition Statements

Decisions (cont.)
• Similarly, cannot declare loop control variable in for statement

26

{

…

for (int i = 0; i < 10; i++)

/* Do something */

…

}

{

int i;

…

for (i = 0; i < 10; i++)

/* Do something */

…

}

Illegal in C

Legal in C

Statements Summary: C vs. Java

Java only
• Declarations anywhere within block

• Declare immutable variables with final

• Conditionals of type boolean

• “Labeled” break and continue

• No goto

C only
• Declarations only at beginning block

• Declare immutable variables with const

• Conditionals of any type (checked for zero / nonzero)

• No “labeled” break and continue

• goto provided (but don’t use it)

27

iClicker Question

Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

int i = 1;

switch (i++) {

case 1: printf("%d", ++i);

case 2: printf("%d", i++);

}

I/O Facilities

Issue: Should C provide I/O facilities?

Thought process
• Unix provides the file abstraction

• A file is a sequence of characters with an indication of the current
position

• Unix provides 3 standard files

• Standard input, standard output, standard error

• C should be able to use those files, and others

• I/O facilities are complex

• C should be small/simple

29

I/O Facilities

Decisions
• Do not provide I/O facilities in the language

• Instead provide I/O facilities in standard library

• Constant: EOF

• Data type: FILE (described later in course)

• Variables: stdin, stdout, and stderr

• Functions: …

30

31

Reading Characters

Issue: What functions should C provide for reading

characters from standard input?

Thought process
• Need function to read a single character from stdin

• Function must have a way to indicate failure, that is, to indicate that

no characters remain

Decisions
• Provide getchar() function

• Make return type of getchar() wider than char

• Make it int; that's the natural word size

• Define getchar() to return EOF (a special non-character int) to

indicate failure

Note
• There is no such thing as "the EOF character"

32

Writing Characters

Issue: What functions should C provide for writing a

character to standard output?

Thought process
• Need function to write a single character to stdout

Decisions
• Provide a putchar() function

• Define putchar() to accept one parameter

• For symmetry with getchar(), parameter should be an int

33

Reading Other Data Types

Issue: What functions should C provide for reading data

of other primitive types?

Thought process
• Must convert external form (sequence of character codes) to internal

form

• Could provide getshort(), getint(), getfloat(), etc.

• Could provide one parameterized function to read any primitive type

of data

Decisions
• Provide scanf() function

• Can read any primitive type of data

• First parameter is a format string containing conversion

specifications

See King book for details

34

Writing Other Data Types

Issue: What functions should C provide for writing data

of other primitive types?

Thought process
• Must convert internal form to external form (sequence of character

codes)

• Could provide putshort(), putint(), putfloat(), etc.

• Could provide one parameterized function to write any primitive type

of data

Decisions
• Provide printf() function

• Can write any primitive type of data

• First parameter is a format string containing conversion

specifications

See King book for details

35

Other I/O Facilities

Issue: What other I/O functions should C provide?

Decisions
• fopen(): Open a stream

• fclose(): Close a stream

• fgetc(): Read a character from specified stream

• fputc(): Write a character to specified stream

• fgets(): Read a line/string from specified stream

• fputs(): Write a line/string to specified stream

• fscanf(): Read data from specified stream

• fprintf(): Write data to specified stream

Described in King book, and later in the course after covering

files, arrays, and strings

Summary

C design decisions and the goals that affected them
• Data types (last time)

• Operators

• Statements

• I/O facilities

Knowing the design goals and how they affected the design

decisions can yield a rich understanding of C

36

37

Appendix: The Cast Operator

Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
• Compiler generates code

• At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375f

i

i = (int)f

38

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
• Compiler generates code

• At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000

00000000000000000000000000000000

-27.375f

d = (double)f

-27.375d

39

Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
• Compiler generates code

• At run-time, code performs conversion

00000010

200000000000000000000000000000010

2

2i

c = (char)i

c

40

Appendix: The Cast Operator

(4) Cast between integer types of same size:
• Compiler generates no code

• Compiler views given bit-pattern in a different way

211111111111111111111111111111110 -2i

u = (unsigned int)i

11111111111111111111111111111110 4294967294u

