
1

The Design of C

Princeton University
Computer Science 217: Introduction to Programming Systems

C is quirky, flawed, and an enormous
success. While accidents of history surely
helped, it evidently satisfied a need for a
system implementation language efficient
enough to displace assembly language,
yet sufficiently abstract and fluent to
describe algorithms and interactions in a
wide variety of environments.

-- Dennis Ritchie

Goals of this Lecture
Help you learn about:

• The decisions that were made by the designers* of C
• Why they made those decisions
… and thereby…
• The fundamentals of C

Why?
• Learning the design rationale of the C language provides a richer

understanding of C itself
• A power programmer knows both the programming language and its

design rationale

* Dennis Ritchie & members of standardization committees

2

Goals of C

3

Designers wanted
C to:

But also:

Support system
programming

Support application
programming

Be low-level Be portable
Be easy for people to
handle

Be easy for computers
to handle

• Conflicting goals on multiple dimensions!
• Result: different design decisions than Java

4

Operators

Issue: What kinds of operators should C have?

Thought process
• Should handle typical operations
• Should handle bit-level programming ("bit twiddling")
• Should provide a mechanism for converting from one type to

another

5

Operators

Decisions
• Provide typical arithmetic operators: + - * / %
• Provide typical relational operators: == != < <= > >=

• Each evaluates to 0 FALSE, 1 TRUE
• Provide typical logical operators: ! && ||

• Each interprets 0 FALSE, non-0 TRUE
• Each evaluates to 0 FALSE, 1 TRUE

• Provide bitwise operators: ~ & | ^ >> <<
• Provide a cast operator: (type)

Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Implication:
• Use logical AND to control flow of logic
• Use bitwise AND only when doing bit-level manipulation
• Same for OR and NOT 6

Decimal Binary
2 00000000 00000000 00000000 00000010

&& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

1 00000000 00000000 00000000 00000001

Decimal Binary
2 00000000 00000000 00000000 00000010

& 1 00000000 00000000 00000000 00000001
---- -----------------------------------

0 00000000 00000000 00000000 00000000

7

Assignment Operator
Issue: What about assignment?

Thought process
• Must have a way to assign a value to a variable
• Many high-level languages provide an assignment statement
• Would be more expressive to define an assignment operator

• Performs assignment, and then evaluates to the assigned value
• Allows assignment to appear within larger expressions

Decisions
• Provide assignment operator: =
• Define assignment operator so it changes the value of a variable,

and also evaluates to that value

8

Assignment Operator Examples
Examples

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) != EOF) …
/* Read a character.

Side effect: assign that character to i.
Evaluate to that character.
Compare that character to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

9

Special-Purpose Assignment
Issue: Should C provide tailored assignment operators?

Thought process
• The construct a = b + c is flexible
• The construct i = i + c is somewhat common
• The construct i = i + 1 is very common
• Special-purpose operators make code more expressive

• Might reduce some errors
• May complicate the language and compiler

Decisions
• Introduce += operator to do things like i += c
• Extend to -= *= /= ~= &= |= ^= <<= >>=
• Special-case increment and decrement: i++ i--
• Provide both pre- and post-inc/dec: x = ++i; y = i++;

iClicker Question
Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

i = 5;
j = i++;
j += ++i;

11

sizeof Operator
Issue: How to determine the sizes of data?
Thought process

• The sizes of most primitive types are un- or under-specified
• Provide a way to find size of a given variable programmatically

Decisions
• Provide a sizeof operator

• Applied at compile-time
• Operand can be a data type
• Operand can be an expression,

from which the compiler infers a data type

Examples, on courselab using gcc217
• sizeof(int) evaluates to 4
• sizeof(i) evaluates to 4 (where i is a variable of type int)

iClicker Question
Q: What is the value of the following sizeof expression

on the courselab machines?

A. 3

B. 4

C. 8

D. 12

E. error

int i = 1;

sizeof(i + 2L)

13

Other Operators
Issue: What other operators should C have?

Decisions
• Function call operator

• Should mimic the familiar mathematical notation
• function(param1, param2, …)

• Conditional operator: ?:
• The only ternary operator: “inline if statement”
• Example: (i < j) ? i : j evaluates to min of i and j
• See King book for details

• Sequence operator: ,
• See King book

• Pointer-related operators: & *
• Described later in the course

• Structure-related operators (. ->)
• Described later in the course

Operators Summary: C vs. Java

Java only
• >>> right shift with zero fill
• new create an object
• instanceof is left operand an object of class right operand?

C only
• -> structure member select
• * dereference
• & address of
• , sequence
• sizeof compile-time size of

14

History of programming languages:
goto, if-then-else, while-do
What the computer does:

/* add up the first n numbers */
1. s = 0;
2. i = 1;
3. if (i>n) goto 7
4. s = s + i;
5. i = i + 1;
6. goto 3
7. /* answer in s */

Early programming
languages (1950s)

s=0;
i=1;
LOOP: if i>n goto DONE
s=s+1;
i=i+1;
goto LOOP;
DONE:

16

Control Statements
Algol-60 language (1960)

if-then-else, while-do, for loop, goto

Scientific background
Boehm and Jacopini proved (1966) that
any algorithm can be expressed as the
nesting of only 3 control structures:

Barry Boehm

statement1

statement2 statement1

condition

statement2

TRUE FALSE

statement

condition
TRUE FALSE

Sequence Selection Repetition

17

Control Statements (cont.)

Thought Process (cont.)
Dijkstra argued that any algorithm should be
expressed using only those control structures
(GOTO Statement Considered Harmful paper,
1968)

C language design (1972)
Basically follow ALGOL-60,
but use { braces } instead of the
more heavyweight BEGIN – END syntax.

Edsgar Dijkstra

Sequence Statement

Compound statement, alias block

18

{
statement1;
statement2;
…

}

statement1

statement2

Sequence

Selection Statements

19

if (expr)
statement1;

if (expr)
statement1;

else
statement2;

statement1

condition

statement2

TRUE FALSE

Selection

Selection Statements

switch and break statements, for multi-path decisions on a
single integerExpr

20

switch (integerExpr)
{ case integerLiteral1:

…
break;

case integerLiteral2:
…
break;

…
default:

…
}

What happens
if you forget
break?

Repetition Statements
while statement; test at leading edge

for statement; test at leading edge, increment at trailing edge

do…while statement; test at trailing edge

21

while (expr)
statement;

for (initExpr; testExpr; incrExpr)
bodyStatement;

do
statement;

while (expr);

expr

statement

test
body
incr

init

expr

statement

Other Control Statements

Issue: What other control statements should C provide?

Decisions
• break statement (revisited)

• Breaks out of closest enclosing switch or repetition statement
• continue statement

• Skips remainder of current loop iteration
• Continues with next loop iteration
• When used within for, still executes incrementExpr

• goto statement grudgingly provided
• Jump to specified label

22

Declaring Variables

Issue: Should C require variable declarations?

Thought process:
• Declaring variables allows compiler to check spelling
• Declaring variables allows compiler to allocate memory

more efficiently

23

Declaring Variables

Decisions:
• Require variable declarations
• Provide declaration statement
• Programmer specifies type of variable (and other attributes too)

Examples
• int i;
• int i, j;
• int i = 5;
• const int i = 5; /* value of i cannot change */
• static int i; /* covered later in course */
• extern int i; /* covered later in course */

24

Declaring Variables
Decisions (cont.):

• Unlike Java, declaration statements must appear before
any other kind of statement in compound statement

25

{
int i;
/* Non-declaration

stmts that use i. */
…
int j;
/* Non-declaration

stmts that use j. */
…

}

{
int i;
int j;
…
/* Non-declaration

stmts that use i. */
…
/* Non-declaration

stmts that use j. */
…

}

Illegal in C Legal in C

Repetition Statements
Decisions (cont.)

• Similarly, cannot declare loop control variable in for statement

26

{
…
for (int i = 0; i < 10; i++)

/* Do something */
…

}

{
int i;
…
for (i = 0; i < 10; i++)

/* Do something */
…

}

Illegal in C

Legal in C

Statements Summary: C vs. Java

Java only
• Declarations anywhere within block
• Declare immutable variables with final
• Conditionals of type boolean
• “Labeled” break and continue
• No goto

C only
• Declarations only at beginning block
• Declare immutable variables with const
• Conditionals of any type (checked for zero / nonzero)
• No “labeled” break and continue
• goto provided (but don’t use it)

27

iClicker Question
Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

int i = 1;
switch (i++) {

case 1: printf("%d", ++i);
case 2: printf("%d", i++);

}

I/O Facilities

Issue: Should C provide I/O facilities?
Thought process

• Unix provides the file abstraction
• A file is a sequence of characters with an indication of the current

position
• Unix provides 3 standard files

• Standard input, standard output, standard error
• C should be able to use those files, and others
• I/O facilities are complex
• C should be small/simple

29

I/O Facilities

Decisions
• Do not provide I/O facilities in the language
• Instead provide I/O facilities in standard library

• Constant: EOF
• Data type: FILE (described later in course)
• Variables: stdin, stdout, and stderr
• Functions: …

30

31

Reading Characters
Issue: What functions should C provide for reading

characters from standard input?

Thought process
• Need function to read a single character from stdin
• Function must have a way to indicate failure, that is, to indicate that

no characters remain

Decisions
• Provide getchar() function
• Make return type of getchar() wider than char

• Make it int; that's the natural word size
• Define getchar() to return EOF (a special non-character int) to

indicate failure

Note
• There is no such thing as "the EOF character" 32

Writing Characters
Issue: What functions should C provide for writing a

character to standard output?

Thought process
• Need function to write a single character to stdout

Decisions
• Provide a putchar() function
• Define putchar() to accept one parameter

• For symmetry with getchar(), parameter should be an int

33

Reading Other Data Types
Issue: What functions should C provide for reading data

of other primitive types?

Thought process
• Must convert external form (sequence of character codes) to internal

form
• Could provide getshort(), getint(), getfloat(), etc.
• Could provide one parameterized function to read any primitive type

of data

Decisions
• Provide scanf() function
• Can read any primitive type of data
• First parameter is a format string containing conversion

specifications

See King book for details 34

Writing Other Data Types
Issue: What functions should C provide for writing data

of other primitive types?

Thought process
• Must convert internal form to external form (sequence of character

codes)
• Could provide putshort(), putint(), putfloat(), etc.
• Could provide one parameterized function to write any primitive type

of data

Decisions
• Provide printf() function
• Can write any primitive type of data
• First parameter is a format string containing conversion

specifications

See King book for details

35

Other I/O Facilities
Issue: What other I/O functions should C provide?

Decisions
• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

Described in King book, and later in the course after covering
files, arrays, and strings

Summary

C design decisions and the goals that affected them
• Data types (last time)
• Operators
• Statements
• I/O facilities

Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C

36

37

Appendix: The Cast Operator
Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375f

i

i = (int)f

38

Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000
00000000000000000000000000000000

-27.375f

d = (double)f

-27.375d

39

Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

00000010

200000000000000000000000000000010

2

2i

c = (char)i

c

40

Appendix: The Cast Operator

(4) Cast between integer types of same size:
• Compiler generates no code
• Compiler views given bit-pattern in a different way

211111111111111111111111111111110 -2i

u = (unsigned int)i

11111111111111111111111111111110 4294967294u

