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The Design of C

Princeton University
Computer Science 217: Introduction to Programming Systems

C is quirky, flawed, and an enormous 
success. While accidents of history surely 
helped, it evidently satisfied a need for a 
system implementation language efficient 
enough to displace assembly language, 
yet sufficiently abstract and fluent to 
describe algorithms and interactions in a 
wide variety of environments.

-- Dennis Ritchie

Goals of this Lecture
Help you learn about:

• The decisions that were made by the designers* of C
• Why they made those decisions
… and thereby…
• The fundamentals of C

Why?
• Learning the design rationale of the C language provides a richer 

understanding of C itself
• A power programmer knows both the programming language and its 

design rationale

* Dennis Ritchie & members of standardization committees
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Goals of C
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Designers wanted
C to:

But also:

Support system 
programming

Support application 
programming

Be low-level Be portable
Be easy for people to 
handle

Be easy for computers 
to handle

• Conflicting goals on multiple dimensions!
• Result: different design decisions than Java
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Operators

Issue:  What kinds of operators should C have?

Thought process
• Should handle typical operations
• Should handle bit-level programming ("bit twiddling")
• Should provide a mechanism for converting from one type to 

another
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Operators

Decisions
• Provide typical arithmetic operators: + - * /  %
• Provide typical relational operators: == != < <= > >=

• Each evaluates to 0 FALSE, 1 TRUE
• Provide typical logical operators:  ! && ||

• Each interprets 0 FALSE, non-0 TRUE
• Each evaluates to 0 FALSE, 1 TRUE

• Provide bitwise operators: ~ & | ^ >> <<
• Provide a cast operator:  (type)

Logical vs. Bitwise Ops
Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

• 2 (TRUE)  & 1 (TRUE) => 0 (FALSE)

Implication:
• Use logical AND to control flow of logic
• Use bitwise AND only when doing bit-level manipulation
• Same for OR and NOT 6

Decimal  Binary
2  00000000 00000000 00000000 00000010

&& 1  00000000 00000000 00000000 00000001
---- -----------------------------------

1  00000000 00000000 00000000 00000001

Decimal  Binary
2  00000000 00000000 00000000 00000010

& 1  00000000 00000000 00000000 00000001
---- -----------------------------------

0  00000000 00000000 00000000 00000000
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Assignment Operator
Issue:  What about assignment?

Thought process
• Must have a way to assign a value to a variable
• Many high-level languages provide an assignment statement
• Would be more expressive to define an assignment operator

• Performs assignment, and then evaluates to the assigned value
• Allows assignment to appear within larger expressions

Decisions
• Provide assignment operator:  =
• Define assignment operator so it changes the value of a variable, 

and also evaluates to that value
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Assignment Operator Examples
Examples

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0; /* Assignment op has R to L associativity */
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) != EOF) …
/* Read a character.

Side effect: assign that character to i.
Evaluate to that character.
Compare that character to EOF. 
Evaluate to 0 (FALSE) or 1 (TRUE). */
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Special-Purpose Assignment
Issue:  Should C provide tailored assignment operators?

Thought process
• The construct a = b + c is flexible
• The construct i = i + c is somewhat common
• The construct i = i + 1 is very common
• Special-purpose operators make code more expressive

• Might reduce some errors
• May complicate the language and compiler

Decisions
• Introduce += operator to do things like i += c
• Extend to -= *= /= ~= &= |= ^= <<= >>=
• Special-case increment and decrement:  i++ i--
• Provide both pre- and post-inc/dec:  x = ++i; y = i++;

iClicker Question
Q: What are i and j set to in the following code?

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

i = 5;
j = i++;
j += ++i;
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sizeof Operator
Issue:  How to determine the sizes of data?
Thought process

• The sizes of most primitive types are un- or under-specified
• Provide a way to find size of a given variable programmatically

Decisions
• Provide a sizeof operator

• Applied at compile-time
• Operand can be a data type
• Operand can be an expression,

from which the compiler infers a data type

Examples, on courselab using gcc217
• sizeof(int) evaluates to 4
• sizeof(i) evaluates to 4 (where i is a variable of type int)

iClicker Question
Q: What is the value of the following sizeof expression

on the courselab machines?

A. 3

B. 4

C. 8

D. 12

E. error

int i = 1;

sizeof(i + 2L)
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Other Operators
Issue:  What other operators should C have?

Decisions
• Function call operator

• Should mimic the familiar mathematical notation
• function(param1, param2, …)

• Conditional operator:  ?:
• The only ternary operator: “inline if statement”
• Example: (i < j) ? i : j evaluates to min of i and j
• See King book for details

• Sequence operator: ,
• See King book

• Pointer-related operators:  & *
• Described later in the course

• Structure-related operators (.  ->)
• Described later in the course

Operators Summary: C vs. Java

Java only
• >>> right shift with zero fill
• new create an object
• instanceof is left operand an object of class right operand?

C only
• -> structure member select
• * dereference
• & address of
• , sequence
• sizeof compile-time size of
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History of programming languages:
goto, if-then-else, while-do
What the computer does:

/* add up the first n numbers */
1.  s = 0;
2.  i = 1;
3. if (i>n) goto 7
4. s = s + i;
5. i = i + 1;
6. goto 3
7. /* answer in   s   */

Early programming 
languages (1950s)

s=0;
i=1;
LOOP: if i>n goto DONE
s=s+1;
i=i+1;
goto LOOP;
DONE:
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Control Statements
Algol-60 language (1960)

if-then-else,  while-do, for loop, goto

Scientific background
Boehm and Jacopini proved (1966) that 
any algorithm can be expressed as the 
nesting of only 3 control structures:

Barry Boehm

statement1

statement2 statement1

condition

statement2

TRUE FALSE

statement

condition
TRUE FALSE

Sequence Selection Repetition
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Control Statements (cont.)

Thought Process (cont.)
Dijkstra argued that any algorithm should be 
expressed using only those control structures
(GOTO Statement Considered Harmful paper, 
1968)

C language design (1972)
Basically follow ALGOL-60,
but use   { braces }  instead of the
more heavyweight  BEGIN – END syntax.

Edsgar Dijkstra

Sequence Statement

Compound statement, alias block
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{
statement1;
statement2;
…

}

statement1

statement2

Sequence



Selection Statements
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if (expr)
statement1;

if (expr)
statement1;

else
statement2;

statement1

condition

statement2

TRUE FALSE

Selection

Selection Statements

switch and break statements, for multi-path decisions on a 
single integerExpr
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switch (integerExpr)
{  case integerLiteral1:

…
break;

case integerLiteral2:
…
break;

…
default:

…
}

What happens 
if you forget 
break?

Repetition Statements
while statement; test at leading edge

for statement; test at leading edge, increment at trailing edge

do…while statement; test at trailing edge
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while (expr)
statement;

for (initExpr; testExpr; incrExpr)
bodyStatement;

do
statement;

while (expr);

expr

statement

test
body
incr

init

expr

statement

Other Control Statements

Issue:  What other control statements should C provide?

Decisions
• break statement (revisited)

• Breaks out of closest enclosing switch or repetition statement
• continue statement

• Skips remainder of current loop iteration
• Continues with next loop iteration
• When used within for, still executes incrementExpr

• goto statement grudgingly provided
• Jump to specified label
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Declaring Variables

Issue:  Should C require variable declarations?

Thought process:
• Declaring variables allows compiler to check spelling
• Declaring variables allows compiler to allocate memory

more efficiently
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Declaring Variables

Decisions:
• Require variable declarations
• Provide declaration statement
• Programmer specifies type of variable (and other attributes too)

Examples
• int i;
• int i, j;
• int i = 5;
• const int i = 5;  /* value of i cannot change */
• static int i;     /* covered later in course */
• extern int i;     /* covered later in course */
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Declaring Variables
Decisions (cont.):

• Unlike Java, declaration statements must appear before
any other kind of statement in compound statement
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{
int i;
/* Non-declaration

stmts that use i. */
…
int j;
/* Non-declaration

stmts that use j. */
…

}

{
int i;
int j;
…
/* Non-declaration

stmts that use i. */
…
/* Non-declaration

stmts that use j. */
…

}

Illegal in C Legal in C

Repetition Statements
Decisions (cont.)

• Similarly, cannot declare loop control variable in for statement
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{
…
for (int i = 0; i < 10; i++)

/* Do something */
…

}

{
int i;
…
for (i = 0; i < 10; i++)

/* Do something */
…

}

Illegal in C

Legal in C

Statements Summary: C vs. Java

Java only
• Declarations anywhere within block
• Declare immutable variables with final
• Conditionals of type boolean
• “Labeled” break and continue
• No goto

C only
• Declarations only at beginning block
• Declare immutable variables with const
• Conditionals of any type (checked for zero / nonzero)
• No “labeled” break and continue
• goto provided (but don’t use it)
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iClicker Question
Q: What does the following code print?

A. 1

B. 2

C. 3

D. 22

E. 33

int i = 1;
switch (i++) {

case 1: printf("%d", ++i);
case 2: printf("%d", i++);

}

I/O Facilities

Issue:  Should C provide I/O facilities?
Thought process

• Unix provides the file abstraction
• A file is a sequence of characters with an indication of the current 

position
• Unix provides 3 standard files

• Standard input, standard output, standard error
• C should be able to use those files, and others
• I/O facilities are complex
• C should be small/simple
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I/O Facilities

Decisions
• Do not provide I/O facilities in the language
• Instead provide I/O facilities in standard library

• Constant:   EOF
• Data type:  FILE (described later in course)
• Variables:  stdin, stdout, and stderr
• Functions: …
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Reading Characters
Issue:  What functions should C provide for reading 

characters from standard input?

Thought process
• Need function to read a single character from stdin
• Function must have a way to indicate failure, that is, to indicate that 

no characters remain

Decisions
• Provide getchar() function
• Make return type of getchar() wider than char

• Make it int; that's the natural word size
• Define getchar() to return EOF (a special non-character int) to 

indicate failure

Note
• There is no such thing as "the EOF character" 32

Writing Characters
Issue:  What functions should C provide for writing a 

character to standard output? 

Thought process
• Need function to write a single character to stdout

Decisions
• Provide a putchar() function
• Define putchar() to accept one parameter

• For symmetry with getchar(), parameter should be an int
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Reading Other Data Types
Issue:  What functions should C provide for reading data 

of other primitive types?

Thought process
• Must convert external form (sequence of character codes) to internal 

form
• Could provide getshort(), getint(), getfloat(), etc.
• Could provide one parameterized function to read any primitive type 

of data

Decisions
• Provide scanf() function
• Can read any primitive type of data
• First parameter is a format string containing conversion 

specifications

See King book for details 34

Writing Other Data Types
Issue:  What functions should C provide for writing data 

of other primitive types?

Thought process
• Must convert internal form to external form (sequence of character 

codes)
• Could provide putshort(), putint(), putfloat(), etc.
• Could provide one parameterized function to write any primitive type 

of data

Decisions
• Provide printf() function
• Can write any primitive type of data
• First parameter is a format string containing conversion 

specifications

See King book for details
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Other I/O Facilities
Issue:  What other I/O functions should C provide?

Decisions
• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

Described in King book, and later in the course after covering 
files, arrays, and strings

Summary

C design decisions and the goals that affected them
• Data types (last time)
• Operators
• Statements
• I/O facilities

Knowing the design goals and how they affected the design 
decisions can yield a rich understanding of C
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Appendix: The Cast Operator
Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11111111111111111111111111100101 -27

-27.375f

i

i = (int)f
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Appendix: The Cast Operator

(2) Cast between floating point types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

11000001110110110000000000000000

11000000001110110110000000000000
00000000000000000000000000000000

-27.375f

d = (double)f

-27.375d
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Appendix: The Cast Operator

(3) Cast between integer types of different sizes:
• Compiler generates code
• At run-time, code performs conversion

00000010

200000000000000000000000000000010

2

2i

c = (char)i

c
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Appendix: The Cast Operator

(4) Cast between integer types of same size:
• Compiler generates no code
• Compiler views given bit-pattern in a different way

211111111111111111111111111111110 -2i

u = (unsigned int)i

11111111111111111111111111111110 4294967294u


