Princeton University

Computer Science 217: Introduction to Programming Systems

Number Systems and Number Representation

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec = 31 Oct

Goals of this Lecture

Help you learn (or refresh your memory) about:

- · The binary, hexadecimal, and octal number systems
- · Finite representation of unsigned integers
- · Finite representation of signed integers
- Finite representation of rational (floating-point) numbers

Why?

 A power programmer must know number systems and data representation to fully understand C's primitive data types

Primitive values and the operations on them

2

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

The Decimal Number System

Name

"decem" (Latin) ⇒ ten

Characteristics

- Ten symbols
- 0 1 2 3 4 5 6 7 8 9
- Positional
 - 2945 ≠ 2495
 - \bullet 2945 = (2*10³) + (9*10²) + (4*10¹) + (5*10⁰)

(Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From Late Latin bīnārius ("consisting of two").

Characteristics

- · Two symbols
 - 0 1
- Positional
 - 1010_B ≠ 1100_R

Most (digital) computers use the binary number system

Terminology

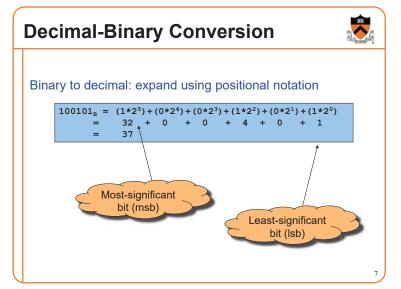
- Bit: a binary digit
- Byte: (typically) 8 bits
- Nibble (or nybble): 4 bits

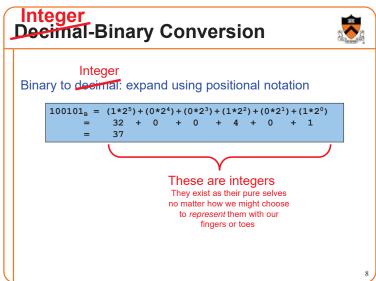
Decimal-Binary Equivalence

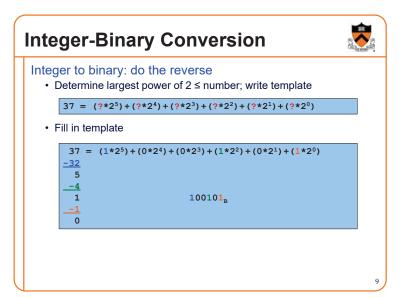
Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

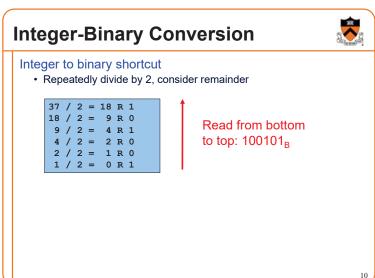
Decimal	<u>Binary</u>
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111

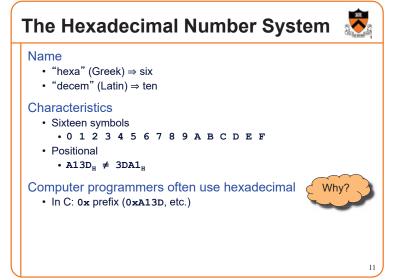
6

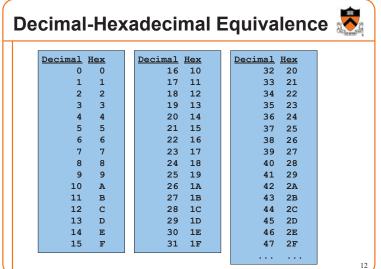












Integer-Hexadecimal Conversion

Hexadecimal to integer: expand using positional notation

$$25_{H} = (2*16^{1}) + (5*16^{0})
= 32 + 5
= 37$$

Integer to hexadecimal: use the shortcut

37 / 16 = 2 R 5 2 / 16 = 0 R 2

Read from bottom to top: 25_H

13

Binary-Hexadecimal Conversion

Observation: $16^1 = 2^4$

· Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010000100111101_B A 1 3 D_H

Digit count in binary number not a multiple of 4 ⇒ pad with zeros on left

Hexadecimal to binary

1010000100111101_B

Discard leading zeros from binary number if appropriate

Is it clear why programmers often use hexadecimal?

iClicker Question

Q: Convert binary 101010 into decimal and hex

A. 21 decimal, 1A hex

B. 42 decimal, 2A hex

C. 48 decimal, 32 hex

D. 55 decimal, 4G hex

The Octal Number System

• "octo" (Latin) \Rightarrow eight

Characteristics

- Eight symbols
 - 0 1 2 3 4 5 6 7
- Positional
 - $1743_{\circ} \neq 7314_{\circ}$

Computer programmers often use octal (so does Mickey!)

• In C: 0 prefix (01743, etc.)

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

Integral Types in Java vs. C

	,	Java	С				
Unsigned types	char	// 16 bits	unsigned of unsigned s unsigned (unsigned 1	short (int)	8 bits	*/	
Signed types	short int	// 8 bits // 16 bits // 32 bits // 64 bits	signed of (signed) is (signed) 1	short	Note 2	*/	
Floating-point types		// 32 bits // 64 bits	float double long doubl	Le			

- 1. Not guaranteed by C, but on courselab, char = 8 bits, short = 16 bits, int = 32 bits, long = 64 bits, float = 32 bits, double = 64 bits
- 2. Not guaranteed by C, but on courselab, char is signed

To understand C, must consider representation of both

unsigned and signed integers

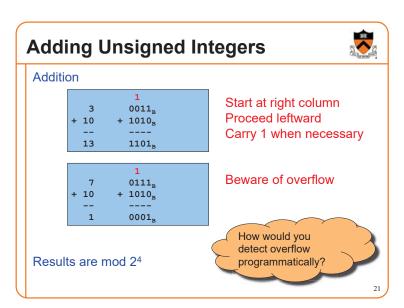
Representing Unsigned Integers Mathematics • Range is 0 to ∞ Computer programming • Range limited by computer's word size • Word size is n bits ⇒ range is 0 to 2ⁿ – 1 • Exceed range ⇒ overflow Typical computers today • n = 32 or 64, so range is 0 to 2³² – 1 or 2⁶⁴ – 1 (huge!) Pretend computer

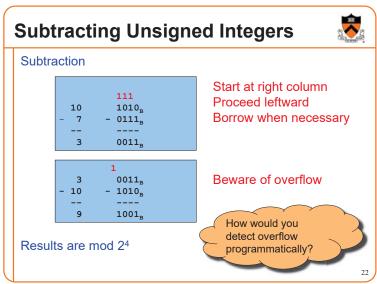
• n = 4, so range is 0 to $2^4 - 1$ (15)

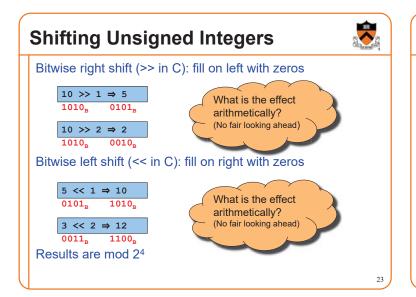
• All points generalize to word size = 64, word size = n

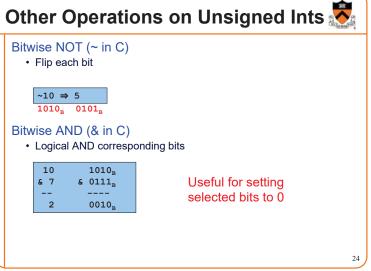
Hereafter, assume word size = 4











Other Operations on Unsigned Ints 💆

Bitwise OR: (| in C)

· Logical OR corresponding bits

10	1010 _B
1	0001 _B
11	1011 _B

Useful for setting selected bits to 1

Bitwise exclusive OR (* in C)

· Logical exclusive OR corresponding bits

x ^ x sets all bits to 0

iClicker Question

Q: How do you set bit "n" (counting lsb=0) of unsigned variable "u" to zero?

A.
$$u \&= (0 << n);$$

B.
$$u = (1 << n);$$

C. u &=
$$\sim$$
(1 << n);

D.
$$u = (1 << n);$$

E.
$$u = \sim u \wedge (1 << n);$$

Aside: Using Bitwise Ops for Arith 👼

Can use <<, >>, and & to do some arithmetic efficiently

$$x * 2^y == x << y$$

•
$$3*4 = 3*2^2 = 3 << 2 \Rightarrow 12$$

$$x / 2^y == x \gg y$$

$$\cdot 13/4 = 13/2^2 = 13 >> 2 \Rightarrow 3$$

$$x \% 2^{y} == x \& (2^{y}-1)$$

• 13%4 = 13%2² = 13&(2²-1)

•
$$13\%4 = 13\%2^2 = 13\&(2^2 - 13\&3) \Rightarrow 1$$

Fast way to multiply by a power of 2

Fast way to divide unsigned by power of 2

Fast way to **mod** by a power of 2

Many compilers will do these transformations automatically!

Aside: Example C Program


```
#include <stdio.h>
#include <stdlib.h>
                                      What does it
int main(void)
                                      write?
{ unsigned int n;
  unsigned int count = 0;
  printf("Enter an unsigned integer: ");
  if (scanf("%u", &n) != 1)
  { fprintf(stderr, "Error: Expect unsigned int.\n");
     exit(EXIT_FAILURE);
  while (n > 0)
   { count += (n & 1);
     (n = n \gg 1)
                                       How could you
  printf("%u\n", count);
                                      express this more
  return 0;
                                       succinctly?
```

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

Sign-Magnitude


```
Integer
          1111
          1110
     -6
     -5
          1101
     -4
          1100
                  Definition
          1011
                  High-order bit indicates sign
     -2
          1010
                     0 \Rightarrow positive
     -1
          1001
     -0
          1000
                      1 ⇒ negative
          0000
                  Remaining bits indicate magnitude
      1
          0001
                      1101_{B} = -101_{B} = -5
      2
          0010
                      0101_{B} = 101_{B} = 5
          0011
          0100
      5
          0101
          0110
          0111
```

Sign-Magnitude (cont.)

Tnteger -7 -6 -5 -4 -3 -2 -1 -0 0 1 2 3 4 5 6 7

Ones' Complement


```
Integer
          1000
         1001
    -6
    -5
         1010
         1011
                Definition
    -3
         1100
               High-order bit has weight -7
    -2
         1101
               1010_{B} = (1*-7) + (0*4) + (1*2) + (0*1)
         1110
         1111
     0
         0000
               0010_{B} = (0*-7)+(0*4)+(1*2)+(0*1)
         0001
     1
     2
         0010
         0011
         0100
     5
         0101
         0110
         0111
```

Ones' Complement (cont.)


```
Integer
               Computing negative
    -7
         1000
         1001
               neg(x) = \sim x
     -6
    -5
         1010
                   neg(0101_B) = 1010_B
         1011
                   neg(1010_B) = 0101_B
         1100
         1101
     -1
         1110
         1111
         0000
               Similar pros and cons to
     1
         0001
               sign-magnitude
     2
         0010
         0011
     3
     4
         0100
     5
         0101
         0110
```

Two's Complement


```
<u>Integer</u>
    -8
          1000
    -7
          1001
    -6
          1010
    -5
         1011
                Definition
         1100
                High-order bit has weight -8
    -3
         1101
                1010_{B} = (1*-8) + (0*4) + (1*2) + (0*1)
    -2
         1110
          1111
          0000
                0010_B = (0*-8)+(0*4)+(1*2)+(0*1)
     1
          0001
     2
          0010
          0011
          0100
          0101
          0110
```

Two's Complement (cont.)

	<u>Integer</u> -8 -7 -6	Rep 1000 1001 1010	Computing negative neg(x) = ~x + 1
l	-5	1011	neg(x) = onescomp(x) + 1
l	-4		$neg(0101_B) = 1010_B + 1 = 1011_B$
L	-3	1101	
ı	-2	1110	$neg(1011_B) = 0100_B + 1 = 0101_B$
ı	-1	1111	
ı	0	0000	
l	1	0001	Pros and cons
ı	2	0010	- not symmetric
ı	3	0011	
ı	4	0100	+ one representation of zero
l	5	0101	+ same algorithm adds unsigned numbers
l	6	0110	or signed numbers
l	7	0111	
ı			35

Two's Complement (cont.)

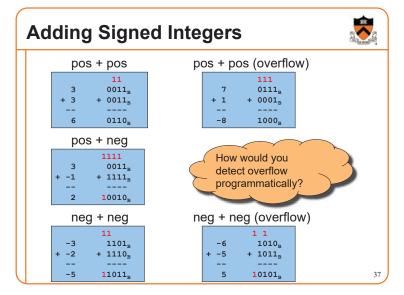
Almost all computers today use two's complement to represent signed integers

· Arithmetic is easy!

Is it after 1980? OK, then we're surely two's complement

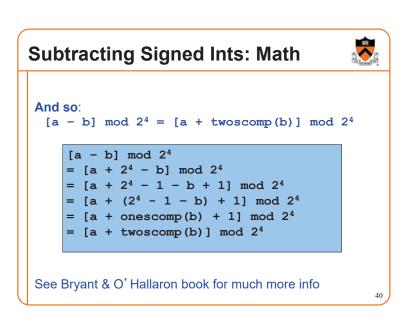
Hereafter, assume two's complement

36

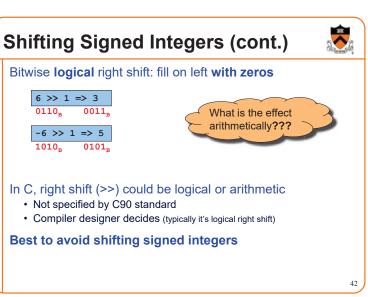




Negating Signed Ints: Math Question: Why does two's comp arithmetic work? Answer: [-b] mod 2⁴ = [twoscomp(b)] mod 2⁴ [-b] mod 2⁴ = [2⁴ - b] mod 2⁴ = [2⁴ - 1 - b + 1] mod 2⁴ = [(2⁴ - 1 - b) + 1] mod 2⁴ = [onescomp(b) + 1] mod 2⁴ = [twoscomp(b)] mod 2⁴ See Bryant & O'Hallaron book for much more info







Other Operations on Signed Ints

Bitwise NOT (~ in C)

· Same as with unsigned ints

Bitwise AND (& in C)

· Same as with unsigned ints

Bitwise OR: (| in C)

· Same as with unsigned ints

Bitwise exclusive OR (* in C)

· Same as with unsigned ints

Best to avoid with signed integers

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

Rational Numbers

Mathematics

- · A rational number is one that can be expressed as the ratio of two integers
- · Unbounded range and precision

Computer science

- · Finite range and precision
- Approximate using floating point number

Floating Point Numbers

Like scientific notation: e.g., c is $2.99792458 \times 10^{8} \text{ m/s}$

This has the form

(multiplier) × (base)(power)

In the computer,

- · Multiplier is called mantissa
- Base is almost always 2
- · Power is called exponent

IEEE Floating Point Representation

Common finite representation: IEEE floating point

· More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 8 bits: exponent + 127

Using 64 bits (type double in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023
- · 52 bits: binary fraction of the form

Floating Point Example

Sign (1 bit):

• 1 ⇒ negative

1100000111011011000000000000000000

32-bit representation

Exponent (8 bits):

- $\cdot 10000011_{B} = 131$
- \cdot 131 127 = 4

Fraction (23 bits): also called "mantissa"

- 1 + $(1*2^{-1})$ + $(0*2^{-2})$ + $(1*2^{-3})$ + $(1*2^{-4})$ + $(0*2^{-5})$ + $(1*2^{-1})$ 6) + (1*2 $^{-7}$) = 1.7109375

Number:

 \bullet -1.7109375 * 24 = -27.375

When was floating-point invented?

Answer: long before computers!

mantissa

decimal part of a logarithm, 1865, from Latin mantisa "a worthless addition, makeweight," perhaps a Gaulish word introduced into Latin via Etruscan (cf. Old Irish meit, Welsh maint "size").

ac	0	T	3	3	4	ś	6	6 7	8	9.	$\Delta_{\mathfrak{m}}$	1	2	
											+			
50	-6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	1	2	8
51	-7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	
52	-7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	8	I	2	
53	-7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	8	I	2	
54	-7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	8	I	2	
55	-7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	8	I	2	
56	-7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	8	ī	2	
57	-7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	8	I	2	
58	-7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	8	1	2	
59	-7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	7	I	I	

Floating Point Consequences

"Machine epsilon": smallest positive number you can add to 1.0 and get something other than 1.0

For float: $\varepsilon \approx 10^{-7}$

- No such number as 1.000000001
- · Rule of thumb: "almost 7 digits of precision"

For double: $\varepsilon \approx 2 \times 10^{-16}$

· Rule of thumb: "not quite 16 digits of precision"

These are all relative numbers

Floating Point Consequences, cont

Decimal

Approx

.33

.333

0.01

0.0011 0.00110

0.001101

0.00110011 51/256

Value 3/10

33/100

333/1000

Rational

1/4

2/8

3/16 6/32

13/64 0.0011010 26/128

Decimal number system can represent only some rational numbers with finite digit count

• Example: 1/3 cannot be represented

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5 cannot be represented

Beware of roundoff error

- · Error resulting from inexact representation
- · Can accumulate
- · Be careful when comparing two floating-point numbers for equality

▶ iClicker Question

Q: What does the following code print?

```
double sum = 0.0;
int i;
for (i = 0; i < 10; i++)
  sum += 0.1;
if (sum == 1.0)
  printf("All good!\n");
else
  printf("Yikes!\n");
```

- A. All good!
- B. Yikes!
- C. Code crashes
- D. Code enters an infinite loop

Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational (floating-point) numbers

Essential for proper understanding of

- · C primitive data types
- · Assembly language
- · Machine language