

LINKED LISTS WORKSHEET

Given the following Java code fragment:
public class SomeClass {

// Node type for linked list

private class Node {

 private String item;

 private Node next;

 private Node (String value) { item = value; }

}

// first must always refer to first Node in the linked list

private Node first = null;

}

For each operation:

● Assume that first refers to beginning of
the link list

● Draw a picture of the linked list before the
operation

● Write the code to implement the operation
○ Note: first must always refer to first

Node in the linked list
● Draw a picture of the linked list after the Java

code is executed

● Assume that Node is a nested class and its
instance variables can be accessed directly -
see Lecture 15 & pp. 575, 594

● E.g.:

Node x = new Node("Princeton");

StdOut.println(x.item);

x.next = new Node("Tigers");

1. Insert a new Node with item = "B" into the linked list

Before Java code After

Node temp = new Node("B");

first = temp;

2. Insert a new Node with item = "A" into beginning of the linked list from (1)

Before Java code After

Node temp = new Node("A");

temp.next = first;

first = temp;

LINKED LISTS WORKSHEET

3. Insert a new Node with item = "D" at the end of the linked list from (2)

Before Java code After

4. Insert a new Node with item = "C" after the Node with item = "B" in the list from (3)

Before Java code After

5. Using a do-while loop, print all the items in the
linked list from (4).

6. Suppose you have a linked list. The start of the
list is stored in Node first. Write a loop to add a
new Node with item = "E" to the end of linked
list. The list may contain 0 or more items.

if (first == null)

 StdOut.println("EMPTY LIST");

else

 Node current = first;

 do {

 while ();

