Binary Search \& Binary Trees Solution

1. Starting from an empty binary search tree, create the binary search tree with the letters:
P, R, I, N, C, E, T, O, N

a. What keys are examined when we search for E? P IC E
b. What keys are examined when we search for Q? P R
2. Which of the following is not a valid binary search tree? Of the valid ones, which is fastest to search?

Answer: B is invalid - 2 cannot be found when we search for it. For performance, it depends on how often each key occurs. If all occur with the same probability, the D is the best. C requires sequential search, but, yes, valid BST.
3. Suppose we have integer values between 1 and 1000 in a BST and search for 363 . Which of the following cannot be the sequence of keys examined?
a. $2,252,401,398,330,363$
b. $399,387,219,266,382,381,278,363$
c. $3,923,220,911,244,898,258,362,363$
d. $4,924,278,347,621,299,392,358,363$

- 299 cannot appear after 621 since that would place it to the right of 347.
e. $5,925,202,910,245,363$

