
Intellectual property
•  protection mechanisms

–  trade secrets
–  trademarks
–  patents
–  copyrights
–  licenses

•  standards and standardization

•  open source / free software

Trade secrets
•  information is a secret held by its owner

•  disclosed only under some kind of agreement
–  e.g., "non-disclosure agreement" or NDA

•  no recourse if secrecy is lost

•  often used to argue that information should not be made public
–  voting machine
–  breathalyzer
–  ...

Patents
•  exclusive right to make, use or sell an invention in US
•  valid for 20 years after filing

•  requirements:
–  statutory subject matter:
 process, machine, article of manufacture, composition of matter
–  novel
–  useful
–  unobvious to person having ordinary skill in the art
 at the time of filing

•  contents:
–  abstract
–  drawings/diagrams
–  specifications (narrative description, preferred embodiment)
–  claims

Patent issues for software
•  what is patentable? (statutory subject matter)

–  software itself
–  business methods

(whether implemented in software or not?)

•  what's novel?
–  how new and unobvious does something have to be?

•  policy questions
–  what should be patentable?
–  are patents (and patent trolls) impeding progress?
–  is the 20-year term too long?

Copyright
•  protects expression, not idea
•  duration used to be 17 years + one renewal
•  now life + 70 years, or 95 years for commercial works

–  (the "Mickey Mouse Protection Act", 1998)
•  "fair use" permits limited copying under some circumstances

–  criticism, comment, scholarship, research, news reporting, teaching
•  uncertain what fair use really is -- case by case decisions
•  considerations:

–  purpose and character of the use
–  nature of the copyrighted work
–  amount and substantiality of the portion used
–  effect of the use on potential market or value of the copyrighted work

•  recent copyright laws may prevent some fair uses
–  can't decrypt to make excerpt for teaching or criticism
–  can't reverse engineer to make copies in different media

Copyright issues in software
•  code

–  theft in commercial setting
–  plagiarism in academic setting

•  visual appearance, "look and feel", etc., of a program

•  interfaces vs implementations

•  reverse engineering?
–  clean room implementation

•  copyright or patent?
–  which is appropriate to protect specific piece of software?

Licenses
•  an agreement (e.g., contract) that allows a particular use of some

software
–  that might otherwise be a violation of copyright, patent, etc.

•  are shrinkwrap and clickwrap licenses valid and enforceable?

•  is licensing replacing purchase?

•  are warranty and liability disclaimers for software valid?

Standards and standardization
•  standard: technical specification sufficiently precise that it

ensures independent implementation, uniformity,
interoperability, ...
–  physical measurements: length, weight, time, chemical composition, ...
–  mechanical properties: plugs & sockets, CD/DVD dimensions, …
–  electrical properties: voltage, frequency, …
–  software: character sets, programming languages, operating system

interfaces, data formats, information exchange protocols, ...
•  standardization: process of establishing a specification

–  usually involves competing entities, so tradeoffs are needed between
mutual benefit and competitive advantage

–  often international (e.g., ISO: International Organization for Standardization)
•  de facto vs de jure standards

–  de facto: Windows, Office, Flash, PDF, ...
–  de jure: ASCII, Unicode, major programming languages, ...

Open source / free software
•  source code: instructions in a readable programming language

–  usually has significant commercial value
e.g., Windows, Office, TurboTax, Photoshop, …

–  usually proprietary, secret, not revealed
even if compiled version is given away (e.g., iTunes, Internet Explorer)

•  "open source": source code is available, can be use, copied and
modified
–  a reaction to restrictions on proprietary code
–  promoted by Free Software Foundation, other open source projects &

groups
•  various kinds of licenses determine what can be done with it

–  mainly concerned with keeping source code open enough that others can
continue to build on it and improve it

–  prevents anyone from taking it private / proprietary
•  a viable threat to proprietary software in important areas

•  plan to build an operating system and all supporting software
–  "GNU" -- "GNU's not Unix"

•  started non-profit organization called the
 Free Software Foundation
•  wanted source code to be released so that it could
 not be made proprietary, would remain free forever

–  "free" as in "free speech", not "free beer"
ok to charge for distribution, support, etc.

•  source released under copyright agreement that requires that any
subsequent distribution be covered by the same agreement

•  GNU GPL (General Public License): "copyleft"
–  full permission to use, copy, modify, distribute modifications
–  copies, derivative works, etc., must have the same terms if distributed
–  copies, etc., must have the same license attached to them
–  NO permission to add further restrictions; explicitly forbidden

•  source code has to be freely available
–  can't "take it private"

Free Software Foundation (Richard Stallman, MIT, ~1985)

Fundamental Software Ideas
•  algorithm: sequence of precise, unambiguous steps

–  performs some task and terminates
–  based on defined basic / primitive operations
–  describes a computation independent of implementation details

•  programming language:
–  grammar, syntax, and semantics for expressing computation

notation is important
•  program: algorithms implemented in a programming language
•  compilers, interpreters: programs that convert from the high

level language used by people to a lower level
–  a compiler is a program that writes a program
–  an interpreter also acts as a computer so the program can be run

•  libraries and components: programs written by others
–  packaged in a form that can be used in a new program

•  abstraction, layers, interfaces, virtualization
–  hiding details, pretending to be something else

•  bugs: the need for absolute precision
–  cover all cases, cope with failures and misuse

