
Interfaces
•  In computing, an interface is a shared boundary across

which two or more separate components of a computer
system exchange information. The exchange can be between
software, computer hardware, peripheral devices, humans
and combinations of these.
–  (Wikipedia, the source of all truth)

•  there has to be agreement about what information is
exchanged and how

•  lots of technical issues
•  surprisingly, some important legal issues

Reprise: what an operating system does
•  manages CPU(s), schedules and coordinates running programs

–  switches CPU among programs that are actually computing
–  suspends programs that are waiting for something (e.g., disk, network)
–  keeps individual programs from hogging resources

•  manages memory (RAM)
–  loads programs in memory so they can run
–  swaps them to disk and back if there isn’t enough RAM (virtual memory)
–  keeps separate programs from interfering with each other
–  and with the operating system itself (protection)

•  manages and coordinates input/output to devices
–  disks, display, keyboard, mouse, buses, network, ...
–  provides fairly uniform interface to disparate devices

•  manages files on disk (file system)
–  provides hierarchy of folders/directories and files for storing information

How applications use the operating system
•  operating system provides services to be accessed
 by application programs

–  Unix "system calls", Windows Application Programming Interface ("API")
"what is the exact time?"
"allocate M more bytes of RAM to me"
"read N bytes from file F into memory starting at location M"
"write N bytes from memory locations starting at M into file F"
"set up a network connection to www.princeton.edu"
"write N bytes to the network connection"
“I’m all done; get rid of me”

•  operating system provides an interface for applications to use
–  programs access machine capabilities only through this interface
–  different physical hardware can provide the same interface
–  programs can be moved to any system that provides the same interface
–  different operating systems can provide the same interface
–  one operating system can simulate the interface provided by another

•  operating system hides details of specific hardware

Example of system-call level coding
•  C program to copy input to output ("copy" command)
•  read, write, exit are system calls

 main() {
 char buf[8192];
 int n;
 while ((n = read(0, buf, sizeof(buf))) > 0)
 write(1, buf, n);
 exit(0);
 }

Software is organized into "layers"
•  each layer presents an interface that higher layers can use

–  defines a "platform" for putting more on top
–  insulates the higher layer from how the lower layer is implemented
–  often called "Application Programming Interface" or API

•  operating system ("kernel")
–  lowest software layer, on top of hardware

(usually: virtual machine is on top of another program, e.g., an operating system)
–  presents its capabilities as system calls

•  libraries
–  code to be used as building blocks in programs
–  present their capabilities as APIs

•  applications
–  e.g., browser, word processor, mailer, compiler, directory lister, ...
–  use libraries and system calls through APIs

Layering
•  an application generally

calls multiple libraries
–  might not make direct system

calls
•  a library generally calls

other libraries
•  library and system call

levels define interfaces
(APIs)

•  programmers may not know
what is "library" and what is
"system call"

applications

hardware

operating system

libraries

system calls

library calls

What's an API?
 Operating systems perform many functions, including

allocating computer memory and controlling peripherals
such as printers and keyboards. Operating systems also
function as platforms for software applications. They do this
by "exposing" — i.e., making available to software
developers — routines or protocols that perform certain
widely-used functions. These are known as Application
Programming Interfaces, or "APIs."

Excerpted from Final Judgment
State of New York, et al v. Microsoft Corporation
US District Court, District of Columbia, Nov 1, 2002

Sample Javascript API fragment

Sample Java API (tiny excerpt)

Android phone organization

apps

hardware

Linux operating system

libraries

system calls

library calls

virtual machine

Java APIs written in Java

RangeCheck

private static void rangeCheck(int arrayLen,
 int fromIndex, int toIndex) {
 if (fromIndex > toIndex)
 throw new IllegalArgumentException("fromIndex(”
 + fromIndex + ") > toIndex(" + toIndex+")");
 if (fromIndex < 0)
 throw new ArrayIndexOutOfBoundsException(fromIndex);
 if (toIndex > arrayLen)
 throw new ArrayIndexOutOfBoundsException(toIndex);
}

Cloud computing APIs
•  'Cloud' has been a go-to metaphor for almost as long as the

Internet has existed, conveying a sense that the Internet was
intangible and bigger than the sum of its parts."

(Wall Street Journal, 9/23/08)

•  software services delivered via the Internet
–  Gmail, Yahoo mail, ...
–  Facebook, Twitter, Flickr, …
–  Google Docs
–  Windows Live, Office 360
–  Amazon Web Services (AWS)

•  most cloud services have an API for access by programs

