Programming

- it's hard to do the programming to get something done
- details are hard to get right, very complicated, finicky
« not enough skilled people to do what is needed

- therefore, enlist machines to do some of the work
— leads to programming languages

- it's hard to manage the resources of the computer
- hard to control sequences of operations
- In ancient times, high cost of having machine be idle

- therefore, enlist machines to do some of the work
— leads to operating systems



Evolution of programming languages

« 1940's: machine level

use binary or equivalent notations for actual numeric values

« 1950's: "assembly language”

loop

done

sum

names for instructions: ADD instead of 0110101, etc.

names for locations: assembler keeps track of where things are in memory;
translates this more humane language into machine language

this is the level used in the "toy" machine
needs total rewrite if moved to a different kind of CPU

get # read a number

ifzero done # no more input if number is zero assenﬂﬂylang
add sum # add in accumulated sum program
store sum # store new value back in sum

goto loop # read another number 1

load sum # print sum

print assembler
stop

0 # sum will be 0 when program starts 1

binary instrs



Evolution of programming languages, 1960's

- "high level" languages: Fortran, Cobol, Basic
— write in a more natural notation, e.g., mathematical formulas
— a program ("compiler”, "translator") converts into assembler
— potential disadvantage: lower efficiency in use of machine

— enormous advantages:
accessible to much wider population of users
portable: same program can be translated for different machines
more efficient in programmer time

sum = 0 Fortran [)rogram
10 read(5,*) num
if (num .eq. 0) goto 20 compiler
sum = sum + num
goto 10
20 write(6,*) sum assembler
stop 1

end binary instrs



Evolution of programming languages, 1970's

- "system programming" languages: C
— efficient and expressive enough to take on any programming task
writing assemblers, compilers, operating systems
— a program ("compiler", "translator") converts into assembler
— enormous advantages:

accessible to much wider population of programmers
portable: same program can be translated for different machines

faster, cheaper hardware helps make this happen
C program
#include <stdio.h>

main () { C compiler

int num, sum = 0;

A\ 4

while (scanf("%d", &num) !'= -1 && num !'= 0)
assembler
sum += num;
printf ("$d\n", sum); _ 1
binary instrs



C code compiled to assembly language (x86, Mac)

Ltmp2:
movl $0, -8 (%rbp)

#include <stdio.h> movl $0, -12(%rbp)

main () { jmp LBB1 2
int num, sum = 0; LBB1_1:
movl -12 (%rbp), %eax
while (scanf("%d", &num) '= -1 movl -8 (%rbp) , %ecx

addl %$eax, %ecx

&& num 1= 0) movl %ecx, -8(%rbp)
sum = sum + num; LBB1 2:

printf ("$d\n", sum); leaq -12 (%$rbp) , %rax

xorb %cl, %cl
} leaqg L _.str(%rip), %rdx

movq srdx, %rdi
movq %rax, 3%rsi
movb %cl, %al
callqg _scanf

(You are not expected to movl %eax, Secx

understand this!) cmpl $-1, %ecx

je LBB1 4
movl -12 (%rbp), %eax
cmpl $0, %eax
jne LBB1 1
LBBl 4:



C code compiled to assembly language (ARM64)

stp x29, x30, [sp, -32]!
add x29, sp, O

#include <stdio.h> str wzr, [x29, 28]
in() { str wzr, [x29, 24]
malin b .L2
int num, sum = 0; -L4:

ldr wO, [x29, 24]

while (scanf("%d", &num) '= -1 ldr wl, [x29, 28]
( ("%d", ) add wO0, wl, wO
&& num !'= 0) str w0, [x29, 28]
.L2:
sum = sum + num; add x1, x29, 24
printf ("$d\n", sum); adrp x0, .LCO
add x0, x0, :l012:.LCO
} bl __isoc99_scanf
cmn w0, #1
beq .L3
ldr wO, [x29, 24]
cmp wO, O
bne .L4
(You are not expected to .L3:
. adrp x0, .LC1
understand this!) add x0, x0, :lol2:.LCl

ldr wl, [x29, 28]

bl printf

mov w0, O

ldp x29, x30, [sp], 32
ret



Evolution of programming languages, 1980's

- "object-oriented" languages: C++

— Dbetter control of structure of really large programs
better internal checks, organization, safety
— a program ("compiler", "translator") converts into assembler or C

— enormous advantages:
portable: same program can be translated for different machines

faster, cheaper hardware helps make this happen

#include <iostream>

main() {
int num, sum = 0;

while (cin >> num && num '= 0)
sum += num;
cout << sum << endl;



Evolution of programming languages, 1990's

- '"scripting", Web, component-based, ...:
Java, Perl, Python, Ruby, Visual Basic, Javascript, ...
— write big programs by combining components already written
— often based on "virtual machine": simulated, like fancier toy computer
— enormous advantages:
portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

var sum = 0; // javascript

var num = prompt ("Enter new value, or 0 to end")

while (num '= 0) {
sum = sum + parselInt (num)

num = prompt ("Enter new value, or 0 to end")

}

alert("Sum = " + sum)



™
LD
™
=
O
O
O
O
R~
:

(A i 7 Y/ "7
,’ \\\\\«\\\\\\\\\M\N

/ 7 g
e
Dot L)
.\\.\\.\\\\‘\\.“\\\N\&

e aen .
J \ ’ .\\ \\\\\\ -
s, \\\\\
W, \\\\x_Y. O

/.

OURE FLYING! 3
HOW?

2]
/D.mJ WWWW WN.
fr—8.8z Z¢

o =2 —
W e MWMW WE
UW.H HO & = F
.n..pvw wnm ..Bvﬁw

<o

= OH<<Z
~. I..Glc -
5 BZ234qy 42
&y BEo3ge 32
chf uE2z2s £3
=296 m C.,SW =

MME Serz

N/

InVuW mvN\A

ENE

= w S

&y o2

Ba% &3

~_ 2 o .\W.m,n

mwmzmm

HZe Y .4




30

25

20

Ratings (%)
s

10

2006

TIOBE Programming Community Index
Source: www.tiobe.com

2008

2010

2012

2014

2016

2018

== Java

- C

== Python

we C+4

== Visual Basic .NET

w C#

w= PHP

== JavaScript
Objective-C



Why so many programming languages?

every language is a tradeoff among competing pressures
— reaction to perceived failings of others; personal taste

- notation is important

— "Language shapes the way we think and determines what we can think
about."
Benjamin Whorf

— the more natural and close to the problem domain, the easier it is to get
the machine to do what you want

- higher-level languages hide differences between machines and
between operating systems

- we can define idealized "machines" or capabilities and have a
program simulate them -- "virtual machines”

— programming languages are another example of Turing equivalence



xkcd.com/303

FOR LEGITIMAT

THE #1 PROGRAMMER EXCUSE

ELY SLACKING OFF:

MY CODE'S COMPILING.”

HEY! GETBACK Y
T0 WORK!




