What's in a computer?

• **logical or functional organization: "architecture"**
 – what the pieces are, what they do, how they work
 – how they are connected, how they work together
 – what their properties are

• **physical structure**
 – what they look like, how they are made

• **major pieces**
 – processor ("central processing unit" or CPU)
 does the work, controls the rest
 – memory (RAM = random access memory)
 stores instructions and data while computer is running
 – disks ("secondary storage")
 stores everything even when computer is turned off
 – other devices ("peripherals")
Freshman SCI computers for class of 2022

- 2.3 GHz Intel Dual Core i5 processor
- 13.3" retina display
- Intel Iris Plus Graphics 640
- 8 GB memory
- 256GB PCIe-based SSD
- Force Touch Trackpad
- Two Thunderbolt 3 Ports
- Mac OS X 10

Apple Macbook Pro

Dell XPS 13

- 7th Generation Intel Core i7-85500 processor
- 13.3 inch 4k Ultra HD (3840x2160) InfinityEdge Touch Display
- Intel HD Graphics 620
- 8 GB memory
- 256GB Solid State Drive
- Backlit Keyboard
- USB Type-C to HDMI/VGA/Ethernet/USB 3.0
- Windows 10 Education
Block diagram of a typical laptop computer

- Processor (CPU)
- Display/screen
- Mouse, keyboard, touchpad
- Primary memory (RAM)
- Secondary storage (hard disk, SSD)
- Other devices, such as CD/DVD, camera, speakers, microphone, ...
CPU: Central Processing Unit

• can perform a small set of basic operations ("instructions")
 – arithmetic: add, subtract, multiply, divide, …
 – memory access:
 fetch information from memory, store results back into memory
 – decision making: compare numbers, letters, …
 decide what to do next depending on result of previous computations
 – control the rest of the machine
 tell memory to send data to display; tell disk to read data from network; ...

• operates by performing sequences of simple operations very fast

• instructions to be performed are stored in the same memory as the data is
 – instructions are encoded as numbers: e.g., Add = 1, Subtract = 2, ...

• CPU is a general-purpose device: putting different instructions into the memory makes it do a different task
 – this is what happens when you run different programs
How fast is fast?

• CPU uses an internal "clock" (like a heartbeat) to step through instructions

• 900 MHz, 2.5 GHz, etc., is the number of clock ticks per second
 – 1 Hertz = 1 tick per second; abbreviated 1 Hz
 – mega = million
 – giga = billion
 – 1 MHz = 1 megaHertz = 1 million ticks per second
 – 1 GHz = 1 gigaHertz = 1 billion ticks per second = 1000 MHz

• one instruction (like adding two numbers) might take one, two or several ticks, depending on design of the CPU
 – might even complete more than one instruction in one tick

• very rough approximations:
 – PC/Mac processors execute about 2-3 billion instructions/sec
 – cellphone processors execute about 1-2 billion instructions/sec
Memory (Random Access Memory = "RAM")

- a place to store information while the computer is running
 - the programs that are running
 - their data
 - the operating system (Windows, Mac OS X, Unix/Linux, ...)
- volatile: forgets everything when power is turned off
- limited (though large) capacity
- logically, a set of numbered boxes ("pigeonholes"? mailboxes?)
 - each capable of storing one byte = 8 bits of information
 - a small number or a single character like A or part of a larger value
 - random access
 - CPU can access any location as quickly as any other location

```
  0 1 2          ..........       8G
```
What's a bit? What's a byte?

- a bit is the smallest unit of information
- represents one 2-way decision or a choice out of two possibilities
 - yes / no, true / false, on / off, up / down, ...
- abstraction of all of these is represented as 0 or 1
 - enough to tell which of TWO possibilities has been chosen
 - a single digit with one of two values
 - hence "binary digit"
 - hence bit
- binary is used in computers because it's easy to make fast, reliable, small devices that have only two states
 - high voltage/low voltage, current flowing/not flowing (chips)
 - electrical charge present/not present (Flash)
 - magnetized this way or that (disks)
 - light bounces off/doesn't bounce off (cd-rom, dvd)

- all information in a computer is stored and processed as bits
- a byte is 8 bits that are treated as a unit
Disks

• a place to store information when the power is turned off
• was based on magnetic surfaces, rotating machinery
 – today, more often solid-state Flash memory (SSD)
• logical / functional structure: folders (directories) and files
 – your information: papers, mail, music, web page, ...
 – programs and their data: Firefox, Word, iTunes, ...
 – operating system(s): Windows, MacOS, Unix, Linux, ...
 – bookkeeping info: where things are physically located
Other things

- **CD, DVD**
 - CD ~ 650 MB capacity; DVD: typically 4.7 or 8.4 GB

- **modem**
 - converts info to/from sound for sending by telephone
 - slow! 56 kilo**bits** per second (56 Kbps): ~ 5000 characters/second

- **network interface**
 - connects computer to network, usually Ethernet
 - Ethernet transfers data 10 Mbps - 10Gbps
 - wireless is compatible with Ethernet (802.11n ~600 Mbps)
 - Bluetooth (slower, shorter range)
 - fiber (e.g., Verizon FiOS) at least 15 Mbps down, 5 Mbps up (higher==$$$$)

- **peripheral devices connected by USB**
 - USB 2.0 is 480 Mbps (max), USB 3.0 is 5 Gbps
Wrapup on components

• the logical or functional components of computer hardware

• how they fit together, what the numbers measure

• some Greek/Latin/... prefixes:
 – (...,) nano, micro, milli, kilo, mega, giga, tera, (peta, ...)

• what the basic physical pieces look like

• one logical organization can have different physical forms
• logical organization hasn't changed much in 60+ years
• physical form has changed rapidly for the entire time
 – many tradeoffs among physical forms (size, weight, power, ...)
<table>
<thead>
<tr>
<th>Prefix</th>
<th>Exponent</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>nano</td>
<td>10^{-9}</td>
<td>billionth</td>
</tr>
<tr>
<td>micro</td>
<td>10^{-6}</td>
<td>millionth</td>
</tr>
<tr>
<td>milli</td>
<td>10^{-3}</td>
<td>thousandth</td>
</tr>
<tr>
<td>1</td>
<td>10^{0}</td>
<td>thousand</td>
</tr>
<tr>
<td>kilo</td>
<td>10^{3}</td>
<td>million</td>
</tr>
<tr>
<td>mega</td>
<td>10^{6}</td>
<td>billion</td>
</tr>
<tr>
<td>giga</td>
<td>10^{9}</td>
<td>trillion</td>
</tr>
<tr>
<td>tera</td>
<td>10^{12}</td>
<td>quadrillion</td>
</tr>
</tbody>
</table>
THE YEAR 3000 (B.C.)
I'll still keep a bunch of rocks in my basement, just in case...

There is more computing power in this little abacus than in all the giant rocks we move around to do addition.

OOOOh!