9.1 Tensor Decomposition

Let T be a tensor of order 3 with each entry

$$T_{ijk} = \Pr\{i, j, k\ \text{appear in some document}\}.$$

If there are n words in the vocabulary, it takes $O(n^3)$ time to set up T.

Here we restate the model we are interested in. Each of the k topics is identified with a distribution over words, represented by n-dimensional vectors

$$\begin{bmatrix} A_1 \\ \vdots \\ A_k \end{bmatrix}.$$

Each document is generated by picking its topic proportions from a distribution, which can also be viewed as a vector x in k-dimensions, where the value in coordinate i represents the proportion of topic i present in the document. Finally, each word is independently sampled according to the distribution represented by $\sum x_i A_i$, where $\sum x_i = 1$.

This formulation is very general and includes most widely used probabilistic topic models. When the vector x is sampled from Dirichlet distribution Dir, it becomes the Latent Dirichlet Allocation (LDA) model.

9.2 The Method of Moments

Let us describe the approach in the context of topic modeling, working with second order moments. Let M be a $n \times n$ matrix, the entry of which

$$M_{ij} = \Pr\{i, j\ \text{are first two words in the document}\}.$$

denotes the probability that the first and second words in a randomly generated document are word i and j respectively.

Claim: $M = A \mathbb{E}[xx^\top] A^\top$.

Proof.

$$M_{ij} = \mathbb{E}[p_i p_j]$$

$$= \mathbb{E}[(A^{(i)} x)(A^{(j)} x)]$$

$$= A^{(i)} \mathbb{E}[xx^\top] A^{(j)}.$$

\square
9.3 Nonnegative Matrix Factorization (NMF) [Lee, Seung ’99]

In the Nonnegative Matrix Factorization (NMF) problem we are given an \(n \times m \) nonnegative matrix \(M \) and an integer \(r > 0 \). Our goal is to express \(M \) as \(AB \) where \(A \) and \(B \) are nonnegative matrices of size \(n \times r \) and \(r \times m \) respectively. In some applications, it makes sense to ask instead for the product \(AB \) to approximate \(M \) – i.e. (approximately) minimize \(\|M - AB\|_F \) where \(\|\|_F \) denotes the Frobenius norm; we refer to this as Approximate NMF.

Trivial heuristic in this case is Alternating Minimization.

- Fix \(A \), find best \(B \).
- Fix \(B \), find best \(A \).
- Repeat.

Issues:

(i) If the columns of \(A \) are not linearly independent then Radons Lemma implies that this expression can be far from unique.

(ii) The NMF problem is NP-hard when \(r \) is large.

(iii) [AGKM '12] Fixed parameter hard, require \(n^r \) time assuming complexity assumptions. There is also a matching \(n^r \) algorithm.

9.4 The Anchor Word Algorithm

“Anchor words” are specialized words that are specific to a single topic. The condition of separability requires that each topic contains at least one (unknown) anchor word. That is, \(\forall \) topics \(A_i \), \(\exists \) a word \(j \) that appears only in that topic, “anchor word for topic \(i \”).

Let \(\overline{M} \) be the row normalized version of \(M \), i.e. each row of \(\overline{M} \) sums up to 1. It follows that

\[
\overline{M}_{ij} = \Pr\{\text{2nd word is } j \text{ given that first word was } i\}
\]

Claim: All rows of \(\overline{M} \) are convex combinations of rows corresponding to anchor words.

\[
\overline{M} = (\overline{A}) (B)
\]

where \(\overline{A} \) is row normalized.
\[
\begin{bmatrix}
\bar{M} \\
\bar{i}
\end{bmatrix}
=
\begin{bmatrix}
\bar{A} \\
\bar{i}
\end{bmatrix}
\begin{bmatrix}
B
\end{bmatrix}
\]

Let \(B_1, \ldots, B_k \) denote anchor rows. All other rows can be written as \(\sum \lambda_i B_i, \sum \lambda_i = 1 \), which is in the simplex determined by anchor rows.

The anchor word algorithm

Alg. 1

Take a row. Try to write it as convex combination of other rows. If not possible, declare it as one of the anchor rows (i.e. corresponding word \(i \) as an anchor word).

Alg. 2

For \(i = 1, \ldots, k \), find row furthest from subspace spanned by first \(i \) rows you’ve identified.

9.5 Pointwise Mutual Information (PMI)

Diagnose which disease(s) a patient may have by observing the symptoms he/she exhibits. Suppose there are \(n \) symptoms, denoted by \(s_i \) and \(m \) diseases, which is latent variable denoted by \(d_j \).

\[
\Pr\{s_i \text{ absent}\} = 1 - \exp(-w^{(i)} \cdot d)
\]

Can you infer \(\bar{w} \) given patient symptom data?

\[
PMI(x, y) = \log \frac{P(xy)}{P(x)P(y)} \quad \text{“NOISY OR”}
\]

\[
PMI_{ij} = PMI(1 - s_i, 1 - s_j) = \sum_i w^{(i)} w^{(i)\top} + \rho \sum_i w^{(i)} \otimes w^{(i)}
\]

9.6 Robust Jennrich (Guest lecture by Tengyu Ma)

Given \(T = \sum_{i=1}^{d} a_i \otimes b_i \otimes c_i + E \)

- \(a_i \), \(b_i \), \(c_i \) \in \mathbb{R}^d
- \(a_i \)’s are orthogonal
- \(b_i \)’s are orthogonal
- \(c_i \)’s are orthogonal

Goals: to recover \(\{(a_i, b_i, c_i)\} \)
Jennrich ($E = 0$)

\[
M = (g \otimes I \otimes I)^T
= \left(\sum_{i=1}^{d} g_i T_{ijk} \right)_{j=1,\ldots,d}^{k=1,\ldots,d}
= \sum_{i=1}^{d} (g^\top a_i) b_i c_i^\top
= \begin{bmatrix} b_1 & \ldots & b_d \end{bmatrix} \begin{bmatrix} g^\top a_1 & \ldots & g^\top a_d \end{bmatrix} \begin{bmatrix} c_1^\top \\ \vdots \\ c_d^\top \end{bmatrix}
\]

\((A \otimes B)(C \otimes D) = AC \otimes BD\)

Robust Jennrich

\(S = \emptyset\)

For \(s = 1\) to \(O(d^{1+\delta} \log d)\)

\(g \sim N(0, I_{d \times d})\)

\(M = (g^\top \otimes I \otimes I)^T\)

\(v, w = \) left and right top s.v. of \(M\)

\(u = (I \otimes v^\top \otimes w^\top)^T\)

check if \((u, v, w)\) are good by \(\sum_{ijk} u_i v_j w_k T_{ijk} \geq 1 - \epsilon\)

add \((u, v, w) \in S\) if good

\[
M = \sum_{i} \langle g, a_i \rangle b_i c_i^\top + (g \otimes I \otimes I) E
\]

w.p. \(\frac{1}{d^{1-\epsilon}}\) \(\langle g, a_i \rangle\) is the largest

\(\langle g, a_i \rangle \geq \left(\max_{j \neq i} \langle g, a_j \rangle \right) \ast (1 + \delta) \approx \sqrt{\log d}\)

\((g, a_1), \ldots, (g, a_d)\) i.i.d. normal

eigengap in \(M\) is \(\geq \delta \sqrt{\log d}\)

\(\Rightarrow \) Top l.s.v. of \(M - b_1\) \(\leq \frac{||E^\prime||_{sp}}{d \sqrt{\log d}}\) (Wedin’s)

\[
||E||_{(1)\{1,3\}} = ||E\text{ viewed as } d \times d^2||_{sp}
\]

\[
= \max_{v \in \mathbb{R}^{d \times d}_{i,j,k}} \sum_{i,j,k} u_i v_j w_k T_{ijk}
\]

Lem (Ma Shi Steurer)

With high probability

\[
|| (g \otimes I \otimes I)^T ||_{sp} \leq \sqrt{\log d} \max\{||E||_{(2,3)\{1\}}, ||E||_{(1,3)\{2\}} \}
\]