1703.11008v1 [cs.LG] 31 Mar 2017

.
.

arxiv

COMPUTING NONVACUOUS GENERALIZATION BOUNDS
FOR DEEP (STOCHASTIC) NEURAL NETWORKS WITH
MANY MORE PARAMETERS THAN TRAINING DATA

GINTARE KAROLINA DZIUGAITE

University of Cambridge

DANIEL M. Roy

University of Toronto

ABSTRACT. One of the defining properties of deep learning is that models are
chosen to have many more parameters than available training data. In light
of this capacity for overfitting, it is remarkable that simple algorithms like
SGD reliably return solutions with low test error. One roadblock to explain-
ing these phenomena in terms of implicit regularization, structural properties
of the solution, and/or easiness of the data is that many learning bounds are
quantitatively vacuous in this “deep learning” regime. In order to explain gen-
eralization, we need nonvacuous bounds. We return to an idea by Langford
and Caruana (2001), who used PAC-Bayes bounds to compute nonvacuous
numerical bounds on generalization error for stochastic two-layer two-hidden-
unit neural networks via a sensitivity analysis. By optimizing the PAC-Bayes
bound directly, we are able to extend their approach and obtain nonvacu-
ous generalization bounds for deep stochastic neural network classifiers with
millions of parameters trained on only tens of thousands of examples. We
connect our findings to recent and old work on flat minima and MDL-based
explanations of generalization.

CONTENTS
1. Introduction 1
2. Preliminaries 4
3. Optimizing the PAC-Bayes bound 6
4. Experiments 8
5. Results 9
6. Related work 10
7. Conclusions and Future work 13
Acknowledgments 13
References 14
A. Network symmetries 15
B. Approximating KL™*(g|c) 16

1. INTRODUCTION

By optimizing a PAC-Bayes bound, we show that it is possible to compute
nonvacuous numerical bounds on the generalization error of deep stochastic neural
networks with millions of parameters, despite the training data sets being one or
more orders of magnitude smaller than the number of parameters.

1

http://arxiv.org/abs/1703.11008v1

Nonvacuous PAC-Bayes Bounds for Deep Networks 2

To our knowledge, these are the first explicit and nonvacuous numerical bounds
computed in the deep learning regime where the number of network parameters
eclipses the number of training examples. The bounds we compute are data depen-
dent: indeed, even for relatively tiny neural networks, data independent bounds
are vacuous (i.e., they bound the classification error by a number greater than 1).
Evidently, we are operating far from the worst case.

Our investigation was instigated by recent empirical work by Zhang, Bengio,
Hardt, Recht, and Vinyals [Zha+17], who show that stochastic gradient descent
(SGD), applied to deep learning architectures with millions of parameters, is:

(1) able to achieve = 0 training error on CIFAR10 and IMAGENET and still
generalize (i.e., test error remains small, despite the potential for overfit-
ting);

(2) still able to achieve ~ 0 training error even after the labels are randomized,
and does so with only a small factor of additional computational time.

Taken together, these two observations demonstrate that the network architecture
has tremendous capacity to overfit and yet SGD does not abuse this capacity as it
optimizes the surrogate loss, despite the lack of explicit regularization.

It is a major open problem to explain this phenomenon. A natural approach
would be to show that, under natural conditions, SGD finds solutions that possess
structural properties that we already know to be connected to generalization. How-
ever, in order to complete the logical connection, the associated learning bounds
must be nonvacuous in the regime of model size / data size where we hope to explain
the phenomenon.

This work establishes a potential candidate. Chernoff bounds on held-out data
suggest our generalization bounds are loose: across a variety of network architec-
tures, our PAC-Bayes bounds on the test error are in the range 16-22%, while
Chernoff bounds on the test error based on held-out data are consistently around
3%. Despite the gap, theoreticians will likely be surprised that it is possible at all
to obtain nonvacuous numerical bounds on generalization error for a model with
such large capacity trained on so few training examples. While we cannot entirely
explain the magnitude of generalization, we can demonstrate nontrivial generaliza-
tion.

Our approach was inspired by a line of work in physics by Baldassi, Ingrosso,
Lucibello, Saglietti, and Zecchina [Bal+15] and the same authors with Borgs and
Chayes [Bal+16]. Based on theoretical results for discrete optimization linking com-
putational efficiency to the existence of nonisolated solutions, the authors propose
a number of new algorithms for learning discrete neural networks by explicitly driv-
ing them towards nonisolated solutions. On the basis of Bayesian ideas, they posit
that these solutions should have good generalization properties. In a recent collab-
oration with Chaudhari, Choromanska, Soatto, and LeCun [Cha+17], they extend
these ideas to modern deep learning architectures with continuous parametrizations,
obtaining impressive empirical results.

In this setting, nonisolated solutions correspond to “flat minima”. The existence
and generalization properties of flat minima in the neural-network error surface is an
old observation, going back at least to work by Hochreiter and Schmidhuber [HS97],
who discuss sharp versus flat minima using the language of minimum description
length (MDL; [Ris83]). In short, describing weights in sharp minima requires high
precision in order to not incur nontrivial excess error, whereas flat minimum can
be described with lower precision.

Hochreiter and Schmidhuber propose an algorithm to find flat minima by mini-
mizing the training error while maximizing the log volume of a connected region of
the parameter space that yields similar classifiers with similarly good training error.

Sanjeev

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 3

There are very close connections—at both the level of analysis and algorithms—with
the work of Chaudhari et al. [Cha+417] and close connections with the approach we
take to compute nonvacuous generalization bounds by exploiting the local structure
of the learned solution. (We discuss more related work in Section 6.)

Despite the promising theoretical underpinnings, the generalizations theorems
given by [Cha+17] have admittedly unrealistic assumptions, and thus fall short
of demonstrating that small local-entropic loss or the structure of the flat mini-
mum found during optimization explains the generalization performance that they
observe.

The goal of this work is to identify structure in the solutions obtained by SGD
that provably implies small generalization error. Computationally, it is much eas-
ier to demonstrate that a randomized classifier will generalize, and so our results
actually pertain to the generalization error of a stochastic neural network, i.e., one
whose weights/biases are drawn at random from some distribution on every forward
evaluation of the network. In order to explain the observations of [Zha+17], the
next step would be to study whether such structure necessarily arises from per-
forming SGD under natural conditions. (We suspect one condition may be that the
Bayes error rate is close to zero.) More ambitiously, perhaps the same structure
can explain also the efficiency of SGD in practice.

1.1. Approach. Our working hypothesis is that SGD finds good solutions only if
they are surrounded by a relatively large volume of solutions that are nearly as
good. This hypothesis suggests that PAC-Bayes bounds may be fruitful: if SGD
finds a solution contained in a large volume of equally good solutions, then the
expected error rate of a classifier drawn at random from this volume should match
that of the SGD solution. The PAC-Bayes theorem [McA99] bounds the expected
error rate of a classifier chosen from a distribution @ in terms of the Kullback—
Liebler divergence from some a priori fixed distribution P, and so if the volume of
equally good solutions is large, and not too far from the mass of P, we will obtain
a nonvacuous bound.

Our approach will be to use optimization to find a broad distribution @) over
neural network parameters that minimizes the PAC-Bayes bound, in effect mapping
out the volume of equally good solutions surrounding the SGD solution. This idea
is actually a modern take on an old idea by Langford and Caruana [LC02], who
apply PAC-Bayes bounds to small two-layer stochastic neural networks (with only
2 hidden units) that were trained on (relatively large, in comparison) data sets of
several hundred labeled examples.

The basic idea can be traced back even further to work by Hinton and Camp [HC93],
who propose an algorithm for controlling overfitting in neural networks via the
minimum description length principle. In particular, they minimize the sum of
the empirical squared error and the KL divergence between a prior and posterior
distribution on the weights. Their algorithm is applied to networks with 100’s of
inputs and 4 hidden units, trained on several hundred labeled examples. Hinton
and Camp do not compute numerical generalization bounds to verify that MDL
principles alone suffice to ezplain the observed generalization.

Our algorithm more directly extends the work by Langford and Caruana, who
propose to construct a distribution () over neural networks by performing a sensi-
tivity analysis on each parameter after training, searching for the largest deviation
that does not increase the training error by more than, e.g., 1%. For), Langford
and Caruana choose a multivariate normal distribution over the network param-
eters, centered at the parameters of the trained neural network. The covariance
matrix is diagonal, with the variance of each parameter chosen to be the estimated
sensitivity, scaled by a global constant. (The global scale is chosen so that the

Sanjeev

Sanjeev

Sanjeev

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 4

training error of @ is within, e.g., 1% of that of the original trained network.)
Their prior P is also a multivariate Gaussian, but with zero mean and covariance
given by some scalar multiple of the identity matrix. By employing a union bound,
they allow themselves to choose the scalar multiple in a data-dependent fashion to
optimize the PAC-Bayes bound.

The algorithm sketched by Langford and Caruana does not scale to modern neu-
ral networks for several reasons, but one dominates: in massively overparametrized
networks, individual parameters often have negligible effect on the training classi-
fication error, and so it is not possible to estimate the relative sensitivity of large
populations of neurons by studying the sensitivity of neurons in isolation.

Instead, we use stochastic gradient descent to directly optimize the PAC-Bayes
bound on the error rate of a stochastic neural network. At each step, we update the
network weights and their variances by taking a step along an unbiased estimate of
the gradient of (an upper bound on) the PAC-Bayes bound. In effect, the objective
function is the sum of i) the empirical surrogate loss averaged over a random per-
turbation of the SGD solution, and ii) a generalization error bound that acts like a
regularizer.

Having demonstrated that this simple approach can construct a witness to gen-
eralization, it is worthwhile asking whether these ideas can be extended the setting
of local-entropic loss [Cha+17]. If we view the distribution that defines the local-
entropic loss as defining a stochastic neural network, can we use PAC-Bayes bounds
to establish nonvacuous bounds on its generalization error?

2. PRELIMINARIES

Much of the setup is identical to that of [LC02]: We are working in the batch
supervised learning setting. Data points are elements € X C R* with binary
class labels y € {—1,1}. We will denote the training set of size m as Sp,:

Sm = {(iEz‘,yz‘)}i:L,,,,m, where (zz,yz) S (X X y). (1)

Let M be all probability measures on the data space R* x {—1,1}. We will assume
that the training examples are i.i.d. samples from some p € M.

A parametric family of classifiers is a function H : R? x R¥ — {—1,1}, where
hy = H(w,-) : R¥ — {~1,1} is the classifier indexed by the parameter w € R
The hypotheses space induced by H is H = {h,, : w € R%}. A randomized classifier
is a distribution Q on R?. Informally, we will speak of distributions on # when we
mean distributions on the underlying parametrization.

We are interested in the 0-1loss £: R x {—1,1} — {0,1}

£(9,y) = I(sign(y) = y). (2)

We will also make use of the logistic loss : R x {—1,1} — R

(5,9) = @ log(1 + exp(—4y)). 3)

which will serve as a convex surrogate (i.e., upper bound) to the 0-1 loss.

We define the following notions of error:
1 m

— Zﬁ(h(xi), y;) empirical classification error of hypothesis h
m

i=1

for sample S,,;

o é(h,Sy) =

1o
o é(h,Sy) =— Zﬁ(h(zi), y;) empirical (surrogate) error of a hypothesis h
m
i=1
on the training data set S,,. We will use this for training purposes when
we need our empirical loss to be differentiable;

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 5

o e, (h) = < E [é(h,Sn)] expected error for hypothesis h under the data

~pm
distribution p (we will often drop the subscript 1 and just write e(h));
o ¢(Q,Sn) = EQ[é(hw, Sm)] expected empirical error under the randomized
e

classifier @ on H;
e e(Q) = EQ[eu(hw)] expected error for @ on H.

2.1. KL divergence. Let @), P be probability measures defined on a common mea-
surable space H, such that Q) is absolutely continuous with respect to P, and write
% : H — Ry U{oo} for some Radon—Nikodym derivative of ¢ with respect to P.
Then the Kullback—Liebler divergence (or relative entropy) of P from @ is defined
to be

KL(@||P) = [1og 2 do. (1)

We will mostly be concerned with KL divergences where Q and P are probability
measures on Euclidean space, R?, absolutely continuous with respect to Lebesgue
measure. Let g and p denote the respective densities. In this case, the definition of
the KL divergence simplifies to

KL(@|IP) = [1og]%q@)dz. (5)
Of particular interest to us is the KL divergence between multivariate Gaussian
distributions in RY. Let N, = N(uq, 2,) be a multivariate Gaussian with mean p,
and covariance matrix X4, let N, = N (pp, X,), and assume X, and 3, are positive
definite. Then

K N,) = 1 - _ det 2
L(Ng4||Np) 3 <tr (Eplgq) —k+(upfﬂq)T Epl(ﬂpﬂq)+ln<det Z>) .
(6)

For p, q € [0, 1], we will abuse notation and define

q l—¢ .
KL(qllp) := KL(B(q)[|B(p)) = qlog}—) + (1 —q)log 7 Y’ (7)
where B(p) denotes the Bernoulli distribution on {0, 1} with mean p.
2.2. Inverting KL bounds. In the following sections, we will encounter bounds
of the form

KL(qllp) < ¢ (8)
for ¢,p € [0,1] and ¢ > 0. We will most often be interested in the quantity
KL *(qle) :=sup {p € [0,1] : KL(q||p) < ¢}. (9)

We are not aware of a simple formula for KL_l(q|c), although numerical ap-
proximations are readily obtained via Newton’s method (Appendix B). For the
purpose of gradient-based optimization, we can use the well-known inequality,
2(q — p)? < KL(q||p), to obtain a simple upper bound

KL (gle) < g+ v/e/2. (10)

which holds whenever the right hand side is bounded by 1. This bound is quan-
titatively loose when ¢ ~ 0, because then KL !(g|c) ~ ¢ for ¢ < 1, as compared
with the upper bound of ©(y/¢). On the other hand, when c¢ is large enough that
q-+ \/g > 1, the derivative of KL '(q|c) is zero, whereas the upper bound provides
a useful derivative.

Sanjeev

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 6

2.3. Bounds. We will employ three bounds to control the generalization error: the
union bound, a sample convergence bound derived from the Chernoff bound, and
the PAC-Bayes bound due to McAllester [McA99]. We state the union bound for
completeness.

Theorem 2.1 (union). Let Ey, Es,... be events. Then P(U, En) <>, P(Ey).

Recall that B(p) denotes the Bernoulli distribution on {0, 1} with mean p € [0, 1].
The following bound is derived from the KL formulation of the Chernoff bound:

Theorem 2.2 (sample convergence [LC02]). For every p,d € (0,1) and n € N,

P (KLt S willp) = 255 <. (11)
z~B(p)" " \

Finally, we present a variant of the PAC-Bayes bound due to Langford and
Seeger [LS01]. (See also [Lan02].) The PAC-Bayes theorem was first established by
McAllester [McA99].

Theorem 2.3 (PAC-Bayes [McA99; LS01]). For every § > 0, m € N, distribution
won RF x {—1,1}, and distribution P on H,

KL(Q||P) + log %) <5

m—1

P (BQ) KLEQ, Sw)le(@))

12
SWLNHm ()
The PAC-Bayes bound leads to the following learning algorithm [McA99]:

(1) Fix a probability 6 > 0 and a distribution P on H.
(2) Collect an i.i.d. dataset S,, of size m.
(3) Compute the distribution @ on H that minimizes the error bound

KL(Q||P) + log %
m— 1 '

KL‘l(é(Q,S)’ (13)

(4) Return the randomized classifier corresponding to Q.

In all but the simplest scenarios, this learning algorithm is intractable. However,
we can attempt to approximate it.

3. OrPTIMIZING THE PAC-BAYES BOUND

Let H be a parametric family of classifiers and write h,, for H(w,-). We will
interpret h.,, as a neural network with (weight/bias) parameters w € R%, although
the development below is more general.

Fix 6 € (0,1) and some distribution P on R?, and let S,, ~ p™ be m i.i.d.
training examples. We are interested in minimizing the PAC-Bayes bound Eq. (13)
with respect to Q.

For every w € R and s € R, let Ny, s = N (w, diag(s)) denote the multivariate
normal distribution with mean w ‘and diagonal covariance diag(s). As our first sim-
plifications, we replace the PAC-Bayes with the upper bound described by Eq. (10),
replace the empirical loss with its convex surrogate, and restrict @ to the family of
multivariate normal distributions with diagonal covariance structure, yielding the
optimization problem

KL(Nw,sHP) +10g%
2(m—1)

min E(Nw,ss Sm) + \/ (14)

wERd,seRi

Sanjeev

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 7

3.1. The Prior. It remains to choose the prior P. Choosing P to be multivariate
normal leads to a simple analytical formula for the KL divergence. Symmetry
considerations would suggest that we choose P = N (0, AI) for some A > 0, however
there is no single good choice of A\. (We will also see that there are good reasons
not to choose a zero mean, and so we will let wg denote the mean to be chosen a
priori.)

In order to deal with the problem of choosing A\, we will follow Langford and
Caruana [L.LC02] and use a Structural Risk Minimization type argument to choose A
optimally from a discrete set, at the cost of a slight expansion to our generalization
bound. In particular, we will take A = cexp{—;j/b} for some j € N and fixed

W y .~ During optimization, we will
want to avoid discrete optimization, and so we will treat A as if it were a continuous
variable. (We will then discretize A when we evaluate the PAC-Bayes bound after
the fact.) Solving for j, we have j = blog §, and so we will replace j with this
term during optimization. Taking into account the choice of P and the continuous
approximation to the union bound, we have the following minimization problem:

min E(Nuw,s, Sm) + v/ Bre(w, s, \; 0) (15)
’UJGRd,SGRi,)\G(O,C)

where
KL(Nuw,s||NV (wo, A)) + 2log(blog §) + log ”2—5’”
2(m—1)

Brr(w, s, A;0) = (16)

and, using Eq. (6), the KL term simplifies to
1.1 1
KL(No ol [N (0, AT)) = 3 (sl + 5 llw — w3 + dlog A — 14 -Tog's —d). 117

3.2. Stochastic Gradient Descent. We cannot optimize this objective directly
because we cannot compute é(N, s, Sy) or its gradients efficiently. We can, how-
ever, employ a type of stochastic gradient descent. Therefore, the final simplifi-
cation that we will make is to take gradient steps with respect to the unbiased
estimator €(hq, Sm), W' ~ Ny 5. We will use a new independent unbiased estimate
at each iteration. Note that we compute the estimate of the gradient with respect
to the entire data set, although one could also have used a random mini-batch of
the training data at each step. Given the stochastic approximation to the error
term, we can now employ any gradient-based optimization algorithm.

3.3. Evaluating the final PAC-Bayes bound. While we treat A as a continuous
parameter during optimization, the union bound requires that A be of the form
A = cexp{—j/b}, for some j € N. We therefore round A up or down, choosing that
which delivers the best bound, as computed below.

According to the PAC-Bayes and union bound, with probability 1 — ¢, uniformly
over all w € RY, s € R, and A of the form cexp{—j/b}, for j € N, the error rate
of the randomized classifier Q = N,, s is bounded by

KL™'(é(Q, S)|Bre(w, s, \; 6)). (18)

We cannot compute this bound exactly because computing é(Q,.S) is intractable.
However, we can obtain unbiased estimates and apply the sample convergence

N superior but intractable approach is to choose P as a scale mixture of multivariate normal
distributions. If the scale mixture is chosen to “match” the prior we have defined here, then
we would expect the bound to be tighter because nearby values of j cannot “share statistical
strength”, while they would were P a mixture.

Sanjeev

Sanjeev

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 8

bound (Theorem 2.2). In particular, given n ii.d. samples wi,...,w, from @,
we produce the Monte Carlo approximation @, = Y .-, 0u,, for which é(Qn, Sm)
is exactly computable, and obtain the bound

e(Q,8) < éns(Q,S) =KL (&(Qn, Sm)|n tlog2/d8), (19)
which holds with probability 1 — ¢’. By another application of the union bound,
G(Q) S KL_l(én,S’(st”BRE(wasaA;é))a (2())

with probability 1 — § — ¢’. We use this bound in our reported results.

4. EXPERIMENTS

We optimize PAC-Bayes bounds on the error rates of stochastic neural networks
trained on a binary classification variant of MNIST. We train several different
network architectures, varying both the depth and the width of the network. We
obtain nonvacuous generalization bounds for networks with large VC dimension.

4.1. Dataset. We use the MNIST handwritten digits data set [LCB10] as provided
in Tensorflow [Aba+15], where the dataset is split into the training set (55000 im-
ages) and test set (10000 images). (We do not use the validation set.) Each MNIST
image is black and white and 28-pixels square, resulting in a network input dimen-
sion of k = 784. MNIST is usually treated as a multiclass classification problem. In
order to use standard PAC-Bayes bounds, we produce a binary classification prob-
lem by mapping numbers {0, ...,4} to label 1 and {5,...,9} to label —1. In some
experiments, we train on random labels, i.e., binary labels drawn independently
and uniformly at random.

4.2. Initial network training using SGD. All experiments are performed on
fully connected feed-forward neural networks with 2—4 layers. We choose a standard
initialization scheme for the weights and biases: Weights are initialized randomly
from a normal distribution (with mean zero and standard deviation 0.04) that is
truncated to [-0.08, 0.08]. Biases are initialized to a constant value of 0.1 for the
first layer and 0 for the remaining layers.

We use REctified Linear Unit (RELU) activations at every hidden node. The last
layer is linear. We minimize the logistic loss by Stochastic Gradient Descent (SGD)
and Momentum: learning rate 0.01; momentum 0.9. SGD is run in mini-batches of
size 100.

On our binary variant of MNIST, we train several neural network architectures of
varying depth and width (see Table 1). In each case, we train for a total of 20 epochs.
We also train a small network with 1 hidden layer of 600 nodes on random labels,
in order to demonstrate the large capacity of the network. Obtaining ~0 training
error required 120 epochs. See the first two rows of Table 1 for the train/test error
rates.

4.3. PAC-Bayes bound optimization. As described in Section 3, we optimize
w € RY s € RY, and A € (0,¢) according to Eq. (15) using gradient descent,
replacing the empirical surrogate error of the randomized classifier Q = N, s with
an unbiased estimate produced from a single sample from @ at each iteration.
Before optimization, we fix § = 0.025, b = 100, and ¢ = 0.1.

To ensure that the variables A € (0,¢) and s € Ri remain positive, we re-
parametrize and instead optimize variables representing %1og()\) and %1og(s).

We run gradient descent with the RMSprop optimizer (decay 0.9). The learning
rate is set to 0.001 for the first 150000 iterations. We then lower it to 0.0001 for the
final 50000 iterations. For the random label experiment, we optimize the bound
with a smaller learning rate 0.0001 for 500000 iterations.

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 9

Algorithm 1 is pseudo code for optimizing the PAC-Bayes bound. The code
implements vanilla SGD, although it can be easily modified to use other optimizer,
e.g., RMSprop, momentum.

4.4. Initialization and Symmetry Breaking. In an ideal world, we would ac-
count for all the network symmetries when computing the KL divergence in the
PAC-Bayes bound. (See Appendix A for a discussion.) Because it does not seem to
be computational feasible to account for the symmetries, it makes sense to try to
break the symmetries somehow. In fact, one consequence of randomly initializing
a network is that some symmetries are broken. If we do not expect SGD to reverse
these symmetries, then the initial weight configuration, which we will denote by
wg, will be a better mean for the prior P than the origin. In fact, breaking the
symmetries in this way lead to much better bounds than setting the means to zero.

The prior variance A is initialized to a fixed valued of exp{—6}, and the sensi-
tivities s to |w| with @ = 1. For experiments with random labels, we take s to be
|wl/10.

4.5. Reported values. All reported error rates correspond to classification error.

The train and test errors are evaluated on the network learned by SGD. In all
experiments, SGD achieves perfect or near-perfect classification accuracy on the
training data. We start from the SGD solution when optimizing the PAC-Bayes
bound.

The reported SNN train and test error rates are upper bounds computed by
an application of Theorem 2.2 as described in Section 3.3 with ¢’ = 0.01 and
n = 150000. These numbers are chosen in order to get the estimate within 0.001-
0.002. The reported test error of the SGD solution is the empirical mean. (In
light of 10000 test data points and the observed error rates, upper bounds via
Theorem 2.2 are only 0.005 higher.)

The PAC-Bayes bound is computed as described in Section 3.3. Each bound
holds with probability 0.965 over the choice of the training set and the draws from
the learned SNN Q. For the random label experiment, we report \/ Brg(w, s, A; 0)
as defined in Eq. (16), since the PAC-Bayes bound cannot be computed for values
greater than 1.

To calculate the upper bound on the VC dimension of the network, we use an up-
per bound communicated to us by Bartlett [Bar17] which is itself in O(LW log W),
where L is the number of layers and W is the total number of tunable parameters.

5. RESULTS

See Table 1. All SGD trained networks achieve perfect or nearly perfect accu-
racy on the training data. On true labels, the SNN mean training error increases
slightly as the weight distribution broadens to minimize the KL divergence. The
SGD solution is close to mean of the SNN as measured with respect to the SNN
covariance. For the random label experiment, the SNN mean training error rises
above 10%. Ideally, it might have risen to nearly 50%, while driving down the KL
term to near zero.

The empirical test error of the SGD classifiers does not change much across the
different architectures, despite the potential for overfitting. This phenomenon is
well known, though still remarkable. For the random label experiment, the empir-
ical test classification error of 0.508 represents lack of generalization, as expected.
The same two patterns hold for the SNN test error too, with slightly higher error
rates.

Remarkably, the PAC-Bayes bounds do not grow much despite the networks
becoming several times larger, and all true label experiments have classification

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 10

error bounded by 0.23. Since larger networks possess many more symmetries, the
true PAC-Bayes bounds for our learned stochastic neural network classifier might be
substantially smaller. (See Appendix A for a discussion.) While these bounds are
several times larger than the test error estimated on held out data (approximately,
0.03), they demonstrate nontrivial generalization. As expected mathematically, the
PAC-Bayes bound on the classification error for random labels is 1.0, indicating the
absence of generalization.

The VC dimension upper bounds indicate that data independent bounds will
be vacuous by several orders of magnitude. Because the number of parameters
exceeds the available training data, lower bounds imply that generalization cannot
be explained in a data independent way.

Experiment T-600 T-1200 T-300*> T-600%2 T-1200*> T-600° R-600
Train error 0.001 0.002 0.000 0.000 0.000 0.000 0.007
Test error 0.018 0.018 0.015 0.016 0.015 0.013 0.508

SNN train error ~ 0.028 0.027 0.027 0.028 0.029 0.027 0.112
SNN test error 0.034 0.035 0.034 0.033 0.035 0.032 0.503
PAC-Bayes bound 0.161 0.179 0.170 0.186 0.223 0.201 1.352
KL divergence 5144 5977 5791 6534 8558 7861 201131
parameters 471601 943201 326101 832201 2384401 1192801 471601
VC dimension 26m 56m 26m 66m 187m 121m 26m

TABLE 1. Results for experiments on binary classification variant of MNIST
dataset. SGD is either trained on (T) true labels or (R) random labels. The
network architecture is expressed as N', indicating L hidden layers with N
nodes each. Errors are classification error. The reported VC dimension is the
best known upper bound (in millions) for ReLU networks. The SNN error rates
are tight upper bounds (see text for details). The PAC-Bayes bounds upper
bound the test error with probability 0.965.

5.1. Parameter optimization. One question we were interested in was whether
the weights obtained from optimizing the PAC-Bayes bound had changed much
from the SGD solution wggp that served as an initialization. To answer this ques-
tion, we calculated the p-value of the SGD solution under the distribution of the
stochastic neural network.

Let Qsnn denote the distribution obtained by optimizing the PAC-Bayes bound,
write wgnn and Xgnn for its mean and covariance, and let ||w||sgyy = wTESj\lINw
denote the induced norm. Using 10000 samples, we estimated

P (Hw — WsNN | zsnn < llwsep — wSNNHESNN)- (21)
W~ QSNN
The estimate was 0 for all true label experiments, i.e., wggp is less extreme of a
perturbation of wsnn than a typical perturbation. For the random label experi-
ments, wsnn and wsgp differ significantly, which is consistent with the bound being
optimized in the face of random labels.

6. RELATED WORK

As we mention in the introduction, our approach scales the ideas in [HC93)
and [LCO02] to the modern deep learning regime where the networks have millions
of parameters, but are trained on one or two orders of magnitude fewer training
examples. The objective we optimize is an upper bound on the PAC-Bayes bound,
which we know from the discussion in Section 2.2 will be very loose when the

Sanjeev

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 11

Algorithm 1 PAC-Bayes bound optimization by SGD

Input:
wy € RY > Network parameters (random init.)
w € R? > Network parameters (SGD solution)
Sm > Training examples
0€(0,1) > Confidence parameter
beN,ce (0,1) > Precision and bound for A
7€ (0,1),T > Learning rate; # of iterations
Output: Optimal w, s, A > Weights, variances
1: procedure PAC-BAYES-SGD
2 ¢ < abs(w) > where ¢ = log /s
3: 0o+ —3 > where o = log VA
4: B(w, s, \,w") = é(huy, Sm) + %BRE(w, 8, A)
5 fort + 1,T do > Run SGD for T iterations.
6 Sample @ ~ N (w, diag(e®*))
> Gradient step
w w VB(w,e®, e, w)
7: sl =|s| —7|VB(w,e*, e* w)
0 0 VoB(w, e*, e??, w)
8: return w, e%, e??

empirical classification error is approximately zero. Indeed, in that case, the PAC-
Bayes bound is approximately

KL(Ny,s||P) 4 log %%

é(Nw,saSm) + (m* 1)

The objective optimized by Hinton and Camp is of the same essential form as
this one, except for the choice of squared error and different prior and posterior
distributions. We explored using Eq. (22) as our objective with a surrogate loss,
but it did not produce better results.

In the introduction we discuss the close connection of our work to several recent
papers [Bal+15; Bal4+16; Cha+17] that study “flat” or nonisolated minima on the
account of their generalization and/or algorithmic properties.

Based on theoretical results for k-SAT that efficient algorithms find nonisolated
solutions, Baldassi et al. [Bal+16] model efficient neural network learning algo-
rithms as minimizers of a replicated version of the empirical loss surface, which
emphasizes nonisolated minima and deemphasizes isolated minima. They then
propose several algorithms for learning discrete neural networks using these ideas.

In follow-up work with Chaudhari, Choromanska, Soatto, and LeCun [Cha+17],
they translate these ideas into the setting of continuously parametrized neural net-
works. They introduce an algorithm, called Entropy-SGD, which seeks out large
regions of dense local minima: it maximizes the depth and flatness of the energy
landscape. Their objective integrates both the energy of nearby parameters and the
weighted distance to the parameters. In particular, rather than directly minimizing
an error surface w — L(hy, Sy,), they propose the following minimization problem
over the so-called local-entropic loss:

f;l]; log WN};ZWV[C(V)exp{*L(hw,Sm)}], (23)

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 12

where v > 0 is a parameter and C(y) a constant. In comparison, our algorithm can
be interpreted as an optimization of the form

min E [L(hw,Sn)] + R(w,s) (24)
weRP, seRY, WelNw, s

where R serves as a regularizer that accounts for the generalization error by,
roughly speaking, trying to expand the axis-aligned ellipsoid {z € R? : (w —
x)Tdiag(s)~'(w — z) = 1} and draw it closer to some point wy near the origin.
Comparing Eqs. (23) and (24) highlights similarities and differences. The local-
entropic loss is sensitive to the volume of the regions containing good solutions.
While the first term in our objective function looks similar, it does not, on its own,
account for the volume of regions. This role is played by the second term, which
prefers large regions (but also ones near the initialization wg). In our formulation,
the first term is the empirical error of a stochastic neural network, which is precisely
the term whose generalization error we are trying to bound. Entropy-SGD was not
designed for the purpose of finding good stochastic neural networks, although it
seems possible that having small local-entropic loss would lead to generalization
for neural networks whose parameters are drawn from the local Gibbs distribution.
Another difference is that, in our formulation, the shape of the Gaussian pertur-
bation is learned adaptively, and driven by the goal of minimizing generalization
error. The shape of the Gaussian perturbation is not learned, although the region
whose volume is being measured is determined by the error surface, and it seems
likely that this volume will be larger than that spanned by a multivariate Gaussian
chosen to lie entirely in a region with good loss.

Chaudhari et al. [Cha+17] give an informal characterization of the generaliza-
tion properties of local-entropic loss in Bayesian terms by comparing the marginal
likelihood of two Bayesian priors centered at a solution with small and large local-
entropic loss. Informally, a Bayesian prior centered on an isolated solution will lead
to small marginal likelihood in contrast to one centered in a wide valley. They give
a formal result relying on the uniform stability of SGD [HRS15] to show under some
strong (and admittedly unrealistic) conditions that Entropy-SGD generalizes better
than SGD. The key property is that the local-entropic loss surface is smoother than
the original error surface.

Other authors have found evidence of the importance of “flat” minima: Recent
work by Keskar, Mudigere, Nocedal, Smelyanskiy, and Tang [Kes+17] finds that
large-batch methods tend to converge to sharp / isolated minima and have worse
generalization performance compared to mini-batch algorithms, which tend to con-
verge to flat minima and have good generalization performance. The bulk of their
paper is devoted to the problem of restoring good generalization behavior to batch
algorithms.

Dinh, Pascanu, Bengio, and Bengio [Din+17] criticize various notions of “flat-
ness” and argue that flatness, as defined, is not a necessary condition for gener-
alization. They do this by demonstrating reparameterizations that relocate “flat”
minima to yield sharp minima. However, one can logically explain the general-
ization properties of SGD solutions in terms of sufficient conditions, including the
“flatness” of minima or volume of nearly equivalent solutions.

Finally, our algorithm also bears resemblance to graduated optimization, an ap-
proach toward non-convex optimization attributed to Blake and Zisserman [BZ87]
whereby a sequence of increasingly fine-grained versions of an optimization prob-
lem are solved in succession. (See [HLS16] and references therein.) In this context,
Eq. (23) is the result of a local smoothing operation acting on the objective function
w Z(hw, Swm). In graduate optimization, the effect of the local smoothing oper-
ation would be decreased over time, eventually disappearing. In our formulation,

Sanjeev

Sanjeev

Nonvacuous PAC-Bayes Bounds for Deep Networks 13

the act of balancing the empirical loss and generalization error serve to drive the
evolution of the local smoothing in an adaptive fashion. Moreover, in the limit, the
local smoothing does not vanish in our algorithm, as the volume spanned by the
perturbations relates to the generalization error. Our results suggest that SGD so-
lutions live inside relatively large volumes, and so perhaps SGD can be understood
in terms of graduated optimization.

7. CONCLUSIONS AND FUTURE WORK

We obtain nonvacuous generalization bounds for deep neural networks with mil-
lions of parameters trained on 55000 MNIST examples. These bounds are obtained
by optimizing an objective derived from the PAC-Bayes bound, starting from the
solution produced by SGD. Despite the weights changing, the SGD solution remains
well within the 1% ellipsoidal quantile, i.e., the volume spanned by the stochastic
neural network contains the original SGD solution. (When labels are randomized,
however, optimizing the PAC-Bayes bound causes the solution to shift consider-
ably.)

Our experiments look only at fully connected feed forward networks trained on
a binary classification problem derived from MNIST. It would be interesting to see
if the results extend to multiclass classification, to other data sets, and to other
types of architectures, especially convolutional ones.

In our experiments, we optimize the PAC-Bayes bound starting from an SGD
solution. Omne could instead train the network entirely by optimizing the PAC-
Bayes bound from a random initialization and study how the optima and bounds
compare to those produced via SGD. There are other changes worth studying:
highly dependent weights constrain the size of the axis-aligned ellipsoid representing
the stochastic neural network. We can potentially recognize small populations of
highly dependent weights, and optimize their covariance parameters, rather than
enforcing independence in the posterior.

It is also interesting to consider replacing the posterior with a distribution that
is more tuned to the loss surface. One promising avenue is to follow the lines of
Chaudhari et al. [Cha+17] and consider (local) Gibbs distributions. If the solutions
obtained by minimizing the local-entropic loss are flatter than those obtained by
SGD, than we may be able to demonstrate quantitatively tighter bounds.

Finally, there is the hard work of understanding the generalization properties of
SGD. In light of our work, it may be useful to start by asking whether SGD finds
solutions in flat minima. Such solutions could then be lifted to stochastic neural
networks with good generalization properties. Going from stochastic networks back
to deterministic ones may require additional structure, such as margin.

ACKNOWLEDGMENTS

This research was carried out while the authors were visiting the Simons Institute
for the Theory of Computing at UC Berkeley. The authors would like to thank
Peter Bartlett, Shai Ben-David, Dylan Foster, Matus Telgarsky, and Ruth Urner
for helpful discussions. GKD is supported by an EPSRC studentship. DMR is
supported by an NSERC Discovery Grant, Connaught Award, and U.S. Air Force
Office of Scientific Research grant #FA9550-15-1-0074.

REFERENCES 14

REFERENCES

[Aba+15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.
Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015.

[Bal4+15] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina.
“Subdominant Dense Clusters Allow for Simple Learning and High
Computational Performance in Neural Networks with Discrete Synapses”.
Phys. Rev. Lett. 115 (12 Sept. 2015), p. 128101.

[Bal4+-16] C. Baldassi, C. Borgs, J. T. Chayes, A. Ingrosso, C. Lucibello, L. Sagli-
etti, and R. Zecchina. “Unreasonable effectiveness of learning neural
networks: From accessible states and robust ensembles to basic algorith-
mic schemes”. Proceedings of the National Academy of Sciences 113.48
(2016), E7655-ET7662. eprint: http://www.pnas.org/content/113/48/E7655.full . pdf.

[Barl7] P. L. Bartlett. “The impact of the nonlinearity on the VC-dimension of
a deep network”. Preprint. 2017.

[BZ87] A. Blake and A. Zisserman. Visual Reconstruction. Cambridge, MA,
USA: MIT Press, 1987.

[Cha+17] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C.
Borgs, J. Chayes, L. Sagun, and R. Zecchina. “Entropy-SGD: Biasing
Gradient Descent Into Wide Valleys”. In: International Conference on
Learning Representations (ICLR). 2017. arXiv: 1611.01838v4 [cs.LG].

[Din+17] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp Minima Can
Generalize For Deep Nets. 2017. arXiv: 1703.04933v1 [cs.LG].

[HC93] G. E. Hinton and D. van Camp. “Keeping the Neural Networks Simple
by Minimizing the Description Length of the Weights”. In: Proceedings
of the Sizth Annual Conference on Computational Learning Theory.
COLT ’93. Santa Cruz, California, USA: ACM, 1993, pp. 5-13.

[HLS16] E. Hazan, K. Y. Levy, and S. Shalev-Shwartz. “On Graduated Op-
timization for Stochastic Non-Convex Problems”. In: Proceedings of
the 83rd International Conference on Machine Learning (ICML). 2016,
pp. 1833-1841.

[HRS15] M. Hardt, B. Recht, and Y. Singer. “Train faster, generalize better:
Stability of stochastic gradient descent”. CoRR abs/1509.01240 (2015).

[HS97] S. Hochreiter and J. Schmidhuber. “Flat Minima”. Neural Comput. 9.1
(Jan. 1997), pp. 1-42.

[Kes+17] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang. “On Large-Batch Training for Deep Learning: Generalization
Gap and Sharp Minima”. In: International Conference on Learning
Representations (ICLR). 2017. arXiv: 1609.04836v2 [cs.LG].

[Lan02] J. Langford. “Quantitatively tight sample complexity bounds”. Carnegie
Mellon University, 2002.

[LCO02] J. Langford and R. Caruana. “(Not) Bounding the True Error”. In:
Advances in Neural Information Processing Systems 14. Ed. by T. G.
Dietterich, S. Becker, and Z. Ghahramani. MIT Press, 2002, pp. 809—
816.

http://www.pnas.org/content/113/48/E7655.full.pdf
http://arxiv.org/abs/1611.01838v4
http://arxiv.org/abs/1703.04933v1
http://arxiv.org/abs/1609.04836v2

REFERENCES 15

[LCB10] Y. LeCun, C. Cortes, and C. J. C. Burges. MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/. 2010.

[LS01] J. Langford and M. Seeger. Bounds for Averaging Classifiers. Tech. rep.
CMU-CS-01-102. Carnegie Mellon University, 2001.

[McA99] D. A. McAllester. “PAC-Bayesian Model Averaging”. In: Proceedings
of the Twelfth Annual Conference on Computational Learning Theory.
COLT ’99. Santa Cruz, California, USA: ACM, 1999, pp. 164-170.

[Ris83] J. Rissanen. “A Universal Prior for Integers and Estimation by Min-
imum Description Length”. Ann. Statist. 11.2 (June 1983), pp. 416—
431.

[Zha+17] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Under-
standing deep learning requires rethinking generalization”. In: Inter-
national Conference on Representation Learning (ICLR). 2017. arXiv:
1611.03530v2 [cs.LG].

A. NETWORK SYMMETRIES

Fix a neural network architecture H : R? x R¥ — {—1,1} and write h,, for
H(w,-). It has long been appreciated that distinct parametrizations w,w’ € R?
can lead to the same functions hy, = h,s, and so the set H = {hy, : w € R?} of
classifiers defined by a neural network architecture is a quotient space of R%.

For the purposes of understanding the generalization error of neural networks,
we would ideally work directly with . Let P,Q be a distributions on RY, i.e.,
stochastic neural networks. Then P and @ induce distributions on H, which we
will denote by P and Q, respectively. For the purposes of the PAC-Bayes bound, it
is the KL divergence KL(Q||P) that upper bounds the performance of the stochastic
neural network Q. In general, KL(Q||P) < KL(Q||P), but it is difficult in practice
to approximate the former because the quotient space is extremely complex.

One potential way to approach H is to account for symmetries in the parameter-
ization. A network symmetry is a map o : R? — R? such that, for all w € R?, we
have hy = hg(w). As an example of such a symmetry, in a fully connected network
with identical activation functions at every unit, the function computed by the net-
work is invariant to permuting the nodes with a hidden layer. Let S be any finite
set of symmetries possessed by the architecture. For every distribution Q on R?
and network symmetry o, we may define Q, = Q o o~! to be the distribution over
networks obtained by first sampling network parameters from) and then applying
the map o to obtain a network that computes the same function.

Define Q° = ﬁ ZGGS Q.. Informally, Q and Q° are identical when viewed as dis-

tributions on functions, yet QS spreads its mass evenly over equivalent parametriza-
tions. In particular, for any data set S, we have é(Q,S) = é(Q%,S). We call Q°
a symmetrized version of). The following lemma states that symmetrized ver-
sions always have smaller KL. divergence with respect to distributions that are
invariant to symmetrization: Before stating the lemma, recall that the differen-
tial entropy of an absolutely continuous distribution @ on R? with density ¢ is
J q(z)logg(z)dz € RU {—o00, 0}

Lemma A.1. Let S be a finite set of network symmetries, let P be an absolutely
continuous distribution such that P = P, for all ¢ € S, and define Q° as above for
some arbitrary absolutely continuous distribution Q on R® with finite differential
entropy. Then KL(Q%||P) = KL(Q||P) — KL(Q||Q%) < KL(Q||P).

The above lemma can be generalized to distributions over (potentially infinite)
sets of network symmetries.

http://arxiv.org/abs/1611.03530v2

REFERENCES 16

It follows from this lemma that one can do no worse by accounting for sym-
metries using mixtures, provided that one is comparing to a distribution P that
is invariant to those symmetries. In light of the PAC-Bayes theorem, this means
that a generalization bound based upon a KL divergence that does not account for
symmetries can likely be improved. However, for a finite set S of symmetries, it is
easy to show that the improvement is bounded by log|S|, which suggests that, in
order to obtain appreciable improvements in a numerical bound, one would need to
account for an exponential number of symmetries. Unfortunately, exploiting this
many symmetries seems intractable. It is hard to obtain useful lower bounds to
KL(Q||Q®), while upper bounds from Jensen’s inequality led us to negative (hence
vacuous) lower bounds on KL(Q®||P).

In this work, we therefore take a different approach to dealing with symmetries.
Neural networks are randomly initialized in order to break symmetries. Combined
with the idea that the learned parameters will reflect these broken symmetries, we
choose our prior P to be located at the random initialization, rather than at zero.

B. ApPPROXIMATING KL™*(g|c)

There is no simple formula for KL™"(g|c), but we can approximate it via root-
finding techniques. For all ¢ € (0,1) and ¢ > 0, define hqy..(p) = KL(¢||p) — ¢. Then
hy o(p) = ﬁ — 1. Given a sufficiently good initial estimate py of a root of hg.c(-),
we can obtain improved estimates of a root via Newton’s method:

hg,c(c)

. 25
m () (25)

Pn+1 = N(pn; ¢, ¢) where N(p; q,¢) =p —

This suggests the following approximation to KL ™! (glc):

(1) Lef b=q+./5.
(2) If b > 1, then return 1.
(3) Otherwise, return N¥(b), for some small integer k > 0.

Our reported results use five steps of Newton’s method.

	1. Introduction
	2. Preliminaries
	3. Optimizing the PAC-Bayes bound
	4. Experiments
	5. Results
	6. Related work
	7. Conclusions and Future work
	Acknowledgments
	References
	A. Network symmetries
	B. Approximating KL-1(q|c)

